
Monte Carlo studies of the dipolar spin ice model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 R1277

(http://iopscience.iop.org/0953-8984/16/43/R02)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 18:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) R1277–R1319 PII: S0953-8984(04)92071-1

TOPICAL REVIEW

Monte Carlo studies of the dipolar spin ice model

Roger G Melko1,2 and Michel J P Gingras1,3

1 Department of Physics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
2 Department of Physics, University of California, Santa Barbara, CA 93106, USA
3 Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, ON, M5G 1Z8,
Canada

Received 16 June 2004
Published 15 October 2004
Online at stacks.iop.org/JPhysCM/16/R1277
doi:10.1088/0953-8984/16/43/R02

Abstract
We present a detailed overview of numerical Monte Carlo studies of the dipolar
spin ice model, which has been shown to be an excellent quantitative descriptor
of the Ising pyrochlore materials Dy2Ti2O7 and Ho2Ti2O7. We show that
the dipolar spin ice model can reproduce an effective quasi-macroscopically
degenerate ground state and spin ice behaviour of these materials when the
long range nature of dipole–dipole interaction is handled carefully using Ewald
summation techniques. This degeneracy is, however, ultimately lifted at low
temperature. The long range ordered state is identified via Monte Carlo
simulation techniques. Finally, we investigate the behaviour of the dipolar
spin ice model in an applied magnetic field and compare our predictions to
experimental results. We find that a number of different long range ordered
ground states are favoured by the model, depending on field direction.
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1. Introduction

1.1. Water ice and spin ice

Frustrated or competing interactions are a common feature of many condensed matter
systems [1]. In magnetic materials, frustration arises when the system cannot minimize its
total classical ground state energy by minimizing the energy of each spin–spin interaction
individually [2–5]. When competing interactions cannot be simultaneously satisfied as a
consequence of the arrangement of spins on a geometrical unit, such as a triangle or a
tetrahedron, a system made of an assembly of such units is said to be geometrically frustrated.
Geometric frustration has been studied extensively in recent years, with the discovery of
classical systems that do not display any ordering or dynamical phase transitions down to the
lowest temperatures (for recent reviews see [6–12]). Furthermore, much current research effort
is being deployed to investigate the exotic behaviour of quantum frustrated systems [13–16].
In highly frustrated systems, weak quantum fluctuations may work to select a unique ground
state that is not stabilized at the classical level, while strong quantum fluctuations (e.g. small
spin number value, S) can give rise to novel quantum disordered states [17]. Real material [18–
20] and model systems with strongly correlated electrons in the presence of strong magnetic
frustration display interesting exotic properties.

While geometric frustration most commonly arises between spins interacting
antiferromagnetically (AF), Harris and collaborators [21, 22] showed that the pyrochlore
lattice of corner sharing tetrahedra with Ising spins pointing along a local cubic 〈111〉 axis
constitutes a new class of geometrical frustration when nearest neighbour interactions are
ferromagnetic (FM) (see figure 1) [23, 24]4,5. As a consequence of the frustration on this
lattice, the Ising pyrochlore ferromagnet has a lowest energy ground state configuration that is

4 Anderson had already pointed out the analogy of the relationship between the Ising antiferromagnet model on the
spinel lattice (which is the same magnetic lattice as the pyrochlore lattice of corner sharing tetrahedra) with that of
ice water.
5 We write the nearest neighbour ferromagnetic model as H = −J

∑
〈ia, jb〉 Sa

i · Sb
j , where J > 0 is ferromagnetic,

i, j denote FCC lattice points and a, b label the sublattices. For Ising spins that point along a local 〈111〉 direction
we write Sa

i = σ a
i ẑa , with σ a

i = ±1 and ẑa defining the local 〈111〉 axis on the a sublattice, so we have
H = (+J/3)

∑
〈ia, jb〉 σ a

i σ b
j since ẑa · ẑb = −1/3 on the pyrochlore lattice. This is the Hamiltonian of a pyrochlore

antiferromagnet with global (fictitious) ẑ quantization axis direction and with nearest neighbour coupling constant
+J/3. Hence, the local 〈111〉 Ising ferromagnet on the pyrochlore lattice maps onto the global Ising antiferromagnet
on the same lattice, as studied by Anderson in [23] (see footnote 4). For antiferromagnetic exchange, J < 0, the same
argument shows that there are two ground states related by a global spin reversal symmetry Si → −S j and which
correspond to all spins in or all spins out on the tetrahedra unit cells, therefore constituting a simple and non-frustrated
problem (i.e. a global Ising ferromagnet on an FCC lattice), first noticed in [24].
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Figure 1. The 〈111〉 Ising pyrochlore lattice. The lower left ‘downward’ tetrahedron of the
pyrochlore lattice shows Ising spins as arrows. Each spin axis is along the local 〈111〉 quantization
axis, which goes from one site to the middle of the opposing triangular face (as shown by the
discs) and meets with the three other 〈111〉 axes in the middle of the tetrahedron. For clarity, black
and white circles on the lattice points denote other spins. White represents a spin pointing into
a downward tetrahedron while black has the opposite meaning. The entire lattice is shown in an
ice rule state (two black and two white sites for every tetrahedron). The hexagon (thick grey line)
shows a minimal size loop move, which corresponds to reversing all colours (spins) on the loop to
produce a new ice rule state.

very closely analogous to an entirely different, yet very common frustrated condensed matter
system—namely water ice [10, 12]. In the low temperature–low pressure phase of water ice
(the so-called ‘hexagonal ice’, phase Ih), the oxygen atoms are arranged on a hexagonal lattice,
each oxygen having four nearest neighbours. Bernal and Fowler [25] and Pauling [26] were
the first to propose that the hydrogen atoms (protons) within the H2O lattice are not arranged
periodically, but are disordered. These hydrogen atoms on the O–O bonds are not positioned
at the mid-point between the two oxygen atoms, but rather each proton is (covalently) bonded
‘near’ one oxygen and (hydrogen bonded) ‘far’ from the other such that the water solid consists
of hydrogen bonded H2O molecules (see figure 2). In the Pauling model, ice Ih is established
when the whole system is arranged according to the two ice rules:

(i) Precisely one hydrogen atom is on each proton bond that links two nearest neighbour
oxygen atoms.

(ii) Precisely two hydrogen atoms are near each oxygen atom (spin in) and two are far from
them (spin out; see figure 2).

A consequence of this structure, and the subsequent ice rules, is that there is no single unique
lowest energy state. Indeed, there exist an infinitely large number of degenerate low energy
states that fulfil the ice rules and, if the degeneracy was truly exact, would manifest themselves
as a residual entropy at zero temperature (called the zero-point entropy). This set of all
configurations that obey the ice rules and contribute to the degeneracy is called the ‘ice rules
manifold’. Pauling [26, 27] estimated theoretically the residual entropy per hydrogen atom as
S ≈ kB/2 ln(3/2), where kB is Boltzmann’s constant. To make connection with experimental
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Figure 2. The local proton arrangement in ice, showing oxygen atoms (large white circles) and
hydrogen atoms (small black circles) arranged to obey the ice rules. The displacements of the
hydrogen atoms from the mid-points of the oxygen–oxygen bonds are represented as arrows, which
translate into spins on the pyrochlore lattice in figure 1.

measurements, we will often quote this value scaled by Avogadro’s number NA, so that the
residual Pauling entropy per mole is

S(T → 0) ≈ R

2
ln

3

2
= 1.686 J mol−1 K−1, (1)

where R = NAkB is the molar gas constant. For ice water, Pauling’s result is not exact, but is
accurate to within a few per cent compared to Giauque’s experiments [28].

Returning to the magnetic Ising pyrochlores, the analogy to water ice arises if the spins are
chosen to represent hydrogen displacements from the mid-points of the O–O bonds (figure 2).
The Bernal–Fowler ice rule of two protons close, two protons further away corresponds to
the configuration with two spins in and two spins out of each tetrahedron on the pyrochlore
lattice. Because of this direct analogy between water ice and the Ising pyrochlores, Harris
et al [21, 22] called the latter spin ice [10, 12, 23, 24] (see footnotes 4, 5). We note, however,
that common water ice at atmospheric pressure, ice Ih, has a hexagonal structure, while here
the magnetic lattice has cubic symmetry. Strictly speaking, the Ising pyrochlore problem is
equivalent to cubic ice, and not the hexagonal phase. Yet, this does not qualitatively modify
the ‘ice rule’ analogy (or mapping) or the connection between the statistical mechanics of the
local proton coordination in water ice and the low temperature spin structure of the spin ice
materials.

An important point must be emphasized here. In both ice water and spin ice, the
microscopic origin of the residual zero-point entropy arises from the ‘simplicity’ and
‘underconstraints’ in the problem. Indeed, the constraints (rules) for constructing a minimum
energy ground state, which arise from the underlying microscopic Hamiltonian, are so ‘simple’
that an infinite number of configurations of the dynamical variables at stake (proton position
in ice and spin direction in spin ice) can be used to make a minimum energy state from which
the extensive residual ground state entropy S(T → 0) results. Henceforth, we define the term
‘spin ice behaviour’ as the observation of this Pauling-type entropy, retained by the material
or model spin system at low temperatures, arising from an underlying degeneracy or near
degeneracy in the spin configurations that make up an ice rules manifold. Spin ice behaviour
also precludes the development of long range order in the system, down to the temperature
where dynamical freezing sets in due to large energy barriers separating the ice rule obeying
states.
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Figure 3. (a) Specific heat and (b) entropy data for Dy2Ti2O7 from [30], compared with Monte
Carlo simulation results for the dipolar spin ice model, with Jnn = −1.24 K and Dnn = 2.35 K.

1.2. Dipolar spin ice

Experimentally, it is known that the single ion ground states of the rare earth ions Dy3+ and
Ho3+ in the pyrochlore structure are described by an effective classical Ising doublet [21, 29].
Specific heat measurements by Ramirez [30] on the compound Dy2Ti2O7 have shown that the
‘missing’ magnetic entropy not recovered upon warming the system from T ≈ 0.4 to 10 K
agrees reasonably well with Pauling’s entropy calculation above, S ≈ S(T → 0), thereby
providing compelling thermodynamic evidence that Dy2Ti2O7 is a spin ice material [31] (see
figure 3). While early neutron scattering and magnetization measurements first suggested
that Ho2Ti2O7 was a spin ice material [21], some subsequent specific heat measurements
and numerical simulations by Siddharthan and co-workers were interpreted as evidence for
a freezing transition to a partially ordered state as opposed to spin ice behaviour in that
material [12, 32, 33]. However, more recent specific heat [34, 35], magnetization [35, 36] and
neutron scattering experiments [34], supported by Monte Carlo (MC) simulations [34],confirm
the initial proposal [21] that Ho2Ti2O7 is indeed a spin ice material akin to Dy2Ti2O7. Other
magnetization measurements have recently been reported that also argue for spin ice behaviour
in the closely related Ho2Sn2O7 [37, 38] and Dy2Sn2O7 [39] materials. The dynamical
properties of these materials at the spin ice freezing point appear somewhat puzzling and
are the subject of an increasing number of studies [41–44].
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Following the initial spin ice proposal in 1997 by Harris and co-workers [21, 22], it
appeared that the spin ice materials obeyed the simple ferromagnetic nearest neighbour model
mentioned above. This model intuitively gives rise to a degenerate spin ice ground state
because of the equivalent energies of the six different tetrahedron configurations that make up
the ground state of this geometrically frustrated unit. However, the nearest neighbour spin ice
model is too simple to accurately describe the physical properties of real materials composed
of the rare earth ions Ho3+ and Dy3+ (see [32]). Firstly, the magnetic cations Ho3+ and Dy3+

in Ho2Ti2O7 and Dy2Ti2O7 carry a large magnetic moment [21, 29], µ, of approximately
10 µB. This entails strong magnetic dipole–dipole interactions in these materials. Indeed,
the strength of the dipolar interaction at nearest neighbour distances, Dnn, is of order 2 K,
which is of the same order of magnitude as the overall magnetic interaction energy scale in
these materials as estimated by the Curie–Weiss temperature, θCW ∼ 1 K, extracted from
DC magnetization measurements. Secondly, rare earth ions possess very small exchange
energies, which are roughly of the same order of magnitude as θCW and Dnn. Consequently,
dipole–dipole interactions in Ho2M2O7 and Dy2M2O7 (M = Ti, Sn) are very significant and
constitute an order one energy scale in the problem. This is the reverse of what is observed
in transition metal compounds, where the exchange interaction predominates and the dipolar
interaction can be treated as a very weak perturbation. Finally, the nearest neighbour exchange
interaction in Ho2Ti2O7 and Dy2Ti2O7 is actually antiferromagnetic, which would by itself
cause a phase transition to a Néel long range ordered q = 0 state [22, 24] (footnote 5; see
figure 5). Consequently, we consider the simplest model of 〈111〉 Ising pyrochlore magnets
with both nearest neighbour exchange and long range magnetic dipole–dipole interactions with
the Hamiltonian

H = −J
∑

〈(i,a),( j,b)〉
Sa

i · Sb
j + Dr3

nn

∑
i> j
a,b

Sa
i · Sb

j

|Rab
i j |3 − 3(Sa

i · Rab
i j )(Sb

j · Rab
i j )

|Rab
i j |5 . (2)

Here the spin vector Sa
i = σ a

i ẑa labels the Ising moment of magnitude |Sa
i | = 1 at FCC lattice

site Ri and tetrahedral sublattice site coordinate ra, where the local Ising axis is denoted by
ẑa and the Ising variable is σ a

i = ±1. The vector Rab
i j = Ri j + rab connects spins Sa

i and Sb
j .

J represents the exchange energy and D the dipolar energy scale (J > 0 and D = 0 in the spin
ice model originally proposed by Harris et al [22] which we refer to as the ‘near neighbour
spin ice model’). Because of the relative local 〈111〉 Ising orientations, ẑa · ẑb = −1/3, the
nearest neighbour exchange energy between two spins is Jnn ≡ J/3. The dipole interaction is
calculated from

D = µ0

4π

µ2

r3
nn

. (3)

Experimentally, from magnetization measurements [22] and analysis of the crystal field levels
via inelastic neutron scattering [29], it is known that the moments of the Dy3+ and Ho3+ rare
earth ions in the pyrochlore lattice are µ ≈ 10 µB and the nearest neighbour distance rnn is
approximately 3.54 Å. We get the dipole–dipole interaction at nearest neighbour distances to
be Dnn ≡ 5D/3, since ẑa · ẑb = −1/3 and (ẑa · Rab

i j )(Rab
i j · ẑb) = −2/3 in equation (2). For

both Ho2Ti2O7 and Dy2Ti2O7, Dnn ≈ 2.35 K.
In order to consider the combined role of exchange and dipole–dipole interactions, it is

useful to define an effective nearest neighbour energy scale, Jeff , for 〈111〉 Ising spins:

Jeff ≡ Jnn + Dnn, (4)

where Jnn ≡ J/3 is the nearest neighbour exchange energy between 〈111〉 Ising moments.
This simple near neighbour description of the system suggests that a 〈111〉 Ising system could
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display spin ice properties, even for antiferromagnetic nearest neighbour exchange, Jnn < 0, as
long as Jeff = Jnn + Dnn > 0. Fits to experimental data give Jnn ∼ −0.52 K for Ho2Ti2O7 [34]
and Jnn ∼ −1.24 K for Dy2Ti2O7 [45]. Thus, Jeff is positive (using Dnn = 2.35 K), and hence
ferromagnetic and frustrated, for both Ho2Ti2O7 (Jeff ∼ 1.8 K) and Dy2Ti2O7 (Jeff ∼ 1.1 K).
It would therefore appear natural to ascribe the spin ice behaviour in both Ho2Ti2O7 and
Dy2Ti2O7 to the positive Jeff value as in the simple model of Bramwell and Harris [22]. This
naive interpretation goes a long way in explaining the origin of spin ice in Ho2Ti2O7 and
Dy2Ti2O7. However, the situation is more complex than it appears.

Dipole–dipole interactions (equation (2), second term) are ‘complicated’: (i) they are
strongly anisotropic since they couple the spin, Sa

i , and space, Rab
i j , directions; and (ii) they

are also very long ranged (∝|Rab
i j |−3). For example, the second nearest neighbour distance

is
√

3 times larger than the nearest neighbour distance, which means that the second nearest
neighbour dipolar energy is Dnnn ∼ 0.2Dnn. This implies an important perturbation compared
to Jeff = Jnn + Dnn < Dnn, especially for antiferromagnetic (negative) Jnn. Specifically, for
Dy2Ti2O7, the second nearest neighbour energy scale is about 40% of the effective nearest
neighbour energy scale, Jeff , a large proportion! Therefore, one might have expected that the
dipolar interactions beyond nearest neighbour would cause the different ice rule states to have
different energies, hence possibly breaking the degeneracy of the spin ice manifold, similar
to what happens in the kagomé [46] and pyrochlore Heisenberg antiferromagnets [47] when
exchange interactions beyond nearest neighbour are considered. In equation (2), if the dipolar
term is summed beyond nearest neighbours, one might naively expect a long ranged Néel
ordered state at a critical temperature TN ∼ O(Dnn). Thus, here arises one of the main puzzling
and interesting problems posed by the dipolar spin ice materials that can be summarized by
two questions:

(i) Are the experimental observations of spin ice behaviour in real materials consistent with
dominant long range dipolar interactions?

(ii) If so, why do long range dipolar interactions fail to destroy spin ice behaviour and give
rise to long range order at a temperature TN ∼ O(Dnn)?

Results from Monte Carlo simulations on the dipolar spin ice model attempting to answer
the first question above were first reported in [32] and [33]. In that work, the dipole–dipole
interactions were cut off at a distance of five [32] or ten and twelve nearest neighbours [33]. In
those studies the thermodynamic behaviour was found to be consistent with spin ice behaviour
for a model of Dy2Ti2O7, provided that the size of the magnetic moment of Dy3+ was rescaled
and the exchange interaction was made to extend far beyond nearest neighbours [48]6, but
not for a model of Ho2Ti2O7. Another work [45] considered the Hamiltonian of equation (2)
with only nearest neighbour exchange and the value of J as an adjustable parameter. In
that work, the long range dipole–dipole interaction was handled using the Ewald method,
which derives an effective dipole–dipole interaction between spins within the cubic simulation
cell. The Monte Carlo simulations were carried out by slowly cooling the simulated lattice,
subject to the usual Metropolis algorithm. Numerical integration of the specific heat divided
by temperature was performed to determine the entropy of the system [45]. For a parameter J
appropriate for the Dy2Ti2O7 spin ice material (see section 2 below), the dipolar spin ice model
retained Pauling’s entropy (equation (1)), in good agreement with experiments on Dy2Ti2O7

(figure 3). Following the same approach as in [45], Monte Carlo simulations have found good
agreement between the dipolar spin ice model, specific heat measurements and elastic neutron

6 However, we note that for the open pyrochlore lattice structure, one would naively expect further neighbour exchange
coupling to be very small. See the discussion in [48].
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scattering, as well as experiments on Ho2Ti2O7 [34]. Finally, mean field theory calculations
of the neutron scattering intensity, valid in the (paramagnetic) temperature regime T 	 θCW,
that consider a large distance cut-off of the dipole–dipole interactions, have been found to be
in good agreement with experiments on Ho2Sn2O7 [38] and Ho2Ti2O7 [49]. Consequently,
there is now strong compelling evidence that the long range dipolar interaction is responsible
for the ice behaviour and the subsequent retention of spin entropy in rare earth based insulating
pyrochlore magnets down to very low temperature [10].

1.3. True long range order at low temperature in the dipolar spin ice model

Having answered question No 1 above in the affirmative, one is then faced with addressing
question No 2. The Monte Carlo results mentioned above [45] show that spin ice behaviour
arises from the combination of nearest neighbour exchange, Jnn, and dipole energies, Dnn,
which create an effective ferromagnetic Ising model Jeff at nearest neighbours as long as
Jeff = Jnn + Dnn > 0, akin to Harris and Bramwell’s simple nearest neighbour Ising
model [21, 22, 50, 51]. However, the long range dipolar interaction does not appear to
destroy the spin ice degeneracy (and subsequent retention of zero-point entropy) created by this
effective ferromagnetic nearest neighbour interaction. In support of this picture, a mean field
theory (MFT) calculation finds that the remaining (beyond nearest neighbour) dipole–dipole
interaction terms, which couple every spin in the system with varying strength depending on
their separation distance, are ‘self-screened’ to a large degree [52, 53]. This means that the
degeneracy between different ice rule obeying states is almost exactly fulfilled by carefully
including the long distance dependence of the dipolar term in the Hamiltonian. However, and
perhaps most interestingly for these Ising pyrochlore systems, the same mean field calculation
suggests that the screening of the long range terms is not perfect and that the associated spin
ice manifold is only quasi-degenerate, due to some small remaining effective energy scale, so
a unique ordering wavevector is selected [49, 52, 53]. This suggests that at some temperature
below the onset temperature of spin ice correlations, the dipolar spin ice model should in
principle favour the unique long range ordered state selected by this remaining (‘unscreened’)
perturbative dipole–dipole energy.

One might naively expect that such an ordered state should be found in the MC
simulations [34, 45]. However, this does not happen, as measurements of the temperature
dependent acceptance rate of the simulations make it apparent that the standard single (Ising)
spin flip Metropolis algorithm experiences a dynamical ‘freezing’ at a temperature of ≈0.4 K
for Jnn and Dnn parameters appropriate for Dy2Ti2O7 [45] and T ≈ 0.6 K for Ho2Ti2O7 [34].
If the dipolar interactions are cut off at some arbitrary distance, Rc, one can generate scenarios
where, depending on specific numerical values for Jnn, Dnn and Rc, a selected state is
dynamically accessible before the spin ice manifold freezes out, as was found in simulations
where dipole interactions are cut off [32, 33] (see also appendix B). Consequently, akin to
the case for the approaches used in ice lattice (vertex) models [54, 55], one must introduce
non-local dynamics in the simulation to combat this freezing out and maintain simulation
equilibrium down to lower temperatures. The inclusion of non-local ‘loop moves’ in the
dipolar spin ice model promotes the development of a long range ordered phase via a sharp
first order phase transition at T ≈ 0.18 K [56, 57], a much lower temperature than the onset
temperature for spin ice correlations at T ∼ 1.2 K in Dy2Ti2O7 [30, 45] and T ∼ 1.9 K
in Ho2Ti2O7 [34]. The ground state found in the loop MC simulations has zero total (bulk)
magnetization (recall that each tetrahedron individually carries a net magnetic moment in each
of the ice rule obeying states). See figure 4 for the spin configurations in this ground state.
The pre-transitional specific heat and the latent heat associated with the first order transition
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Figure 4. The long range ordered q = (0, 0, 2π/a) dipolar spin ice ground state. Projected down
the z axis (a), the four tetrahedra making up the cubic unit cell appear as dark grey squares. The
light grey square in the middle does not represent a tetrahedron, but its diagonally opposing spins
are in the same lattice plane. The component of each spin parallel to the z axis is indicated by + and
− signs. In perspective (b), the four tetrahedra of the unit cell are numbered to enable comparison
with (a).

Figure 5. The phase diagram for the dipolar spin ice model in zero applied magnetic field. The
antiferromagnetic ground state is an all-spins-in or all-spins-out configuration for each tetrahedron.
The spin ice configuration, which includes the q = (0, 0, 2π/a) ground state, is a two-spins-in–
two-spins-out configuration for each tetrahedron. The region encompassed between the quasi-
vertical dotted curves displays hysteresis in the long range ordered state selected (q = 0 versus
q = (0, 0, 2π/a)) as Jnn/Dnn is varied at fixed temperature T .

recover all of Pauling’s missing entropy in the model. The ordered state that is found in the loop
MC simulations [56] corresponds to the ordered state predicted by mean field theory [52, 53].
In other words, the dipolar spin ice model possesses on its own, without invoking energetic
perturbations and/or thermal and quantum fluctuations, a unique (up to trivial global symmetry
relations) classical ground state with zero entropy in the thermodynamic limit.

Pauling’s entropy can also be recovered in spin ices exposed to an external magnetic
field. In particular, for fields of sufficient magnitude aligned along different crystal axes,
distinct ground state ordering patterns can be realized which destroy the macroscopic spin
ice degeneracy through various mechanisms. Using MC simulations and direct Ewald energy
calculations, we are able to investigate the behaviour of the dipolar spin ice model in an
external magnetic field. With application of a large field along three different crystal symmetry
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directions, three different long range ordered ground states appear. With large fields parallel
to the [100] crystal direction, the ground state is the ice rules q = 0 structure identified by
Harris [21]. For large fields parallel to [110], the ground state is the ice rule q = X state [21]
and for large fields along [111], the ice rules are broken and a spin configuration wit three
spins in, one spin out becomes the lowest energy state. The experimentally determined field
dependence of the magnetization and specific heat for fields along the [100], [110] and [111]
directions in the Dy2Ti2O7 spin ice material agree quantitatively with the Monte Carlo results
for the long range dipolar spin ice model [58–63].

1.4. Phases of dipolar spin ice

Using Monte Carlo simulations, the zero-field phase diagram for the dipolar spin ice model
can be mapped out (figure 5). To summarize our results, spin ice correlations develop for all
cases where the effective nearest neighbour energy scale Jeff/Dnn > 0.095 (ferromagnetic)
and the temperature is below the broad peak in the specific heat, Tpeak. For T/Dnn � 0.08,
independently of the value of Jnn (as long as Jeff/Dnn > 0.095), the system orders into the
long range ordered state of figure 4, with the help of the loop moves in the simulation. For
Jnn/Dnn less than −0.905 (Jeff/Dnn < 0.095), the system orders into an antiferromagnetic
q = 0 Néel ground state, where every tetrahedron in the system has an all-in or all-out
spin configuration at low temperatures [22, 24, 64, 65] (see footnote 5). The region around
Jnn/Dnn = −1 shows hysteresis at low temperatures. Because of the close cancellation of
energy scales, we imagine that real materials which fall into this region, e.g., Tb2Ti2O7 [66–
69], will be particularly susceptible to the influence of small perturbations (such as exchange
beyond nearest neighbour or finite, as opposed to infinite, Ising anisotropy [53, 70] and, in
particular, to quantum fluctuations) with the result of possible ordering into long range ordered
states [71] distinct from the two shown in figure 5.

1.5. Outline

The rest of the paper is organized as follows. In the next section we present results from
conventional Monte Carlo simulations with single spin flips, that show how spin ice behaviour
develops at finite temperatures in the dipolar spin ice system whenever the effective nearest
neighbour coupling is ferromagnetic (Jeff = Jnn + Dnn > 0). Results from mean field theory,
presented elsewhere [52, 53], show that there exists a weak selection of a unique ordering
mode at q = (0, 0, 2π/a). Motivated by these mean field results, we undertake a numerical
search for a long range ordered state in the model of equation (2). Section 3 discusses the
details of a loop Monte Carlo algorithm that avoids the freezing phenomenon observed in a
MC simulation employing local single spin flip dynamics. Section 4 presents the detailed
results from the loop Monte Carlo simulations. The results for the field dependence of the
ground state energy and magnetization for fields along [100], [110] and [111] are presented in
section 5. We conclude the paper with a brief discussion in section 6. We have included three
appendices. Appendix A contains a discussion of the Ewald technique for dipolar interactions
in real space, as employed in MC simulations. Appendix B compares the Ewald method to
previous results using truncated dipolar interactions. Appendix C discusses some of the effects
of a finite demagnetization factor on simulation results.

2. The dipolar spin ice model: the conventional metropolis Monte Carlo approach

In this section we present the results of Monte Carlo simulations of the dipolar spin ice
Hamiltonian using a standard single spin flip Metropolis algorithm. All simulations are carried
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out on pyrochlore lattices (figure 1) with periodic boundary conditions and of various sizes,
which we reference via the linear dimension L. Precisely, L measures the edge of a cubic unit
cell of four tetrahedra (figure 4(a)) containing sixteen Ising spins, so the number of spins in each
simulation cell is N = 16 × L3. Using the Metropolis algorithm, we mimic the experimental
conditions pertinent to real materials by cooling the simulation sample slowly through a
number of temperature steps. At each temperature step, the system is equilibrated carefully,
then thermodynamic quantities of interest are calculated in the Monte Carlo ‘production’
run. Equilibration is typically confirmed by comparing results on several simulation runs of
different lengths. In figures in this paper, equilibrium and production times were sufficiently
large to give statistical error bars that are smaller than the plotted symbol sizes, unless explicitly
illustrated.

In the Hamiltonian equation (2), the dipole interaction strength D can be determined once
the crystal field structure of the magnetic ion is known, leaving the nearest neighbour exchange
J as the only adjustable parameter in the model. However, the dipole–dipole interaction must
be handled with care. A lattice summation of such interactions is conditionally convergent due
to its 1/R3 nature. In order to properly treat the long range nature of this term, we implement
the Ewald method in the simulations, which derives an effective dipole–dipole interaction
between spins within the simulation cell [72]. Unlike in dipolar fluid simulations [73], the
pyrochlore lattice constrains the positions of the spins in the simulation, allowing the Ewald
interactions to be calculated only once, after which a numerical simulation can proceed as
normal. Appendix A contains a brief discussion of the Ewald method applied to MC real
space simulations.

Simulations carried out on the dipolar spin ice model using the single spin flip Metropolis
algorithm are able to map out three different regions (paramagnetic, AF and spin ice) of
the phase diagram shown in figure 5. As we shall discuss below, the loop Monte Carlo
simulation allows one to explore the development of a long range ordered spin ice state,
the q = (0, 0, 2π/a) phase, at T/Dnn ∼ 0.08 (the double horizontal lines in figure 5).
Thermodynamic data indicate that when the nearest neighbour exchange is AF and sufficiently
large compared to the dipolar interactions (Jnn < 0 and |Jnn| 	 Dnn), the system undergoes a
second order phase transition (in the three-dimensional Ising universality class) to an all-in or
all-out q = 0 ground state.

2.1. Magnetic specific heat

We focus now on Monte Carlo data for the magnetic specific heat of the dipolar spin ice
model. As illustrated in figure 6, specific heat data for different Jnn in the spin ice regime
(Jeff = Jnn + Dnn > 0) show qualitatively the same broad peak as observed in the nearest
neighbour FM exchange model [50], which vanishes at high and low temperatures. The
height, Cpeak, and peak temperature position of this peak, Tpeak, show very little dependence
on system size, for simulation cells of L = 2, 3, 4, 5 and 6. However, both Cpeak and Tpeak are
found to depend strongly on the ratio Jnn/Dnn, as illustrated in figure 7.

By rescaling the temperature scale for the specific heat corresponding to a number of
different interaction parameters Jnn and Dnn, one can expose more clearly the dependence
of the specific heat on the competition between the nearest neighbour exchange Jnn and the
dipole–dipole interactions. Figure 6 shows that in terms of an effective energy scale, Jeff , the
medium range to long range effects of the dipolar interactions are in some sense ‘screened’
by the system, and one recovers qualitatively the short range physics of an effective nearest
neighbour spin ice model. As the nearest neighbour exchange interaction becomes AF (see
figure 7 for Jnn/Dnn < 0), we find that the approximate collapse onto a single energy scale
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Figure 6. The specific heat for system size L = 2, with temperature, T , rescaled into units of
the effective nearest neighbour interaction Jeff = Jnn + Dnn. Jnn/Dnn = 0 corresponds to purely
dipolar interactions, while Jnn/Dnn = ∞ corresponds to nearest neighbour FM exchange only.
Simulation runs for L = 4 were also performed, but revealed no important finite size effects.

Figure 7. The dependence of the simulated specific heat peak height Cpeak and temperature location
of Cpeak and Tpeak on exchange and dipole–dipole interaction parameters. In this figure Dnn is set
to 2.35 K.

becomes less accurate, with the specific heat becoming dependent on Jnn/Dnn. It is within this
regime that we believe that both Ho2Ti2O7 and Dy2Ti2O7 are realized, as we now discuss.

Since Dnn is calculated from equation (3), Jnn must be determined from experimental
data. By fitting either the height Cpeak or the peak temperature Tpeak of the maximum of the
specific heat curves of the Monte Carlo simulation to the experimental results [30] (figure 3(a)),
we obtain a value of Jnn = −1.24 K for Dy2Ti2O7 [45]. The results of this fitting are
illustrated in the top panel of figure 3. A fitting of the height or peak temperature of the
experimental magnetic contribution to the specific heat for Ho2Ti2O7 gives Jnn = −0.52 K for
this material [34]. Contrary to what is reported in [33] we therefore conclude that Ho2Ti2O7 is
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Figure 8. The total experimental specific heat of Ho2Ti2O7 is shown by the open squares. The
expected nuclear contribution is indicated by the curve, while the resulting magnetic specific heat
estimation is shown by the open circles. Near 0.7 K the estimation is prone to a large error. Dipolar
spin ice simulation results are indicated by the filled circles.

‘deeper’ (Jeff more positive for Ho2Ti2O7 than for Dy2Ti2O7) in the spin ice regime (further to
the right in figure 5) than Dy2Ti2O7. As initially reported in [74], the temperature dependence
of the specific heat for Ho2Ti2O7 is less straightforward to interpret than for Dy2Ti2O7 [30].
In Ho2Ti2O7 the specific heat possesses an important contribution from a nuclear component
due to a large hyperfine splitting of the nuclear levels well known to occur for Ho3+ cations,
as discussed in [75] and [76]. This nuclear component was estimated by Blöte et al [75] for
Ho2GaSbO7, another pyrochlore material. By subtracting it off from the (total) experimental
specific heat, we can uncover the underlying magnetic contribution and compare to the
theoretically calculated Monte Carlo specific heat data, from which Tpeak or Cpeak can be
determined directly (figure 8). We note here, as recently observed in [77], that for Dy2Ti2O7

there should be a hyperfine nuclear contribution to the specific heat manifesting itself at a
temperature below T ∼ 0.4 K in the data of Ramirez et al [30] if one uses the typical hyperfine
contact interaction expected for a Dy3+ insulating salt. The absence of the high temperature
1/T 2 tail of the nuclear specific heat (on the descending low temperature side of the magnetic
specific heat of Dy2Ti2O7) below 0.4 K in figure 3(a) is, therefore, somewhat puzzling7.

The shoulder-like feature in the estimated magnetic contribution to the experimental
specific heat data of figure 8 (open circles) near 0.7 K can be entirely eliminated by adjusting
the nuclear hyperfine splitting by ∼2% around the value estimated by Blöte for Ho2GaSbO7,
resulting in an exceedingly good agreement with the Monte Carlo results down to T = 0.4 K.
Such a slight adjustment to account for any small deviations in the hyperfine parameters of
4f rare earth ions (dependent upon electric field gradients, chemical shift etc) would seem
reasonable. However, we do not do this, in order to emphasize that the unbiased use of
the estimated nuclear specific heat contribution from the isostructural pyrochlore material
Ho2GaSbO7 [75] already allows a very good agreement with the theoretical magnetic specific
heat for T � 0.7 K.

7 We note here as well that, compared to the results of [30], the specific heat measurements reported by Blöte et al
[75] for Dy2Ti2O7 do not suffer this problem: the total specific heat of Dy2Ti2O7 in [75] never falls below the expected
1/T 2 paramagnetic nuclear specific heat contribution.
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Having determined Jnn and Dnn for Ho2Ti2O7 from specific heat measurements, we are
able to compare the experimental elastic neutron scattering against that determined via the
Monte Carlo simulations. The results, reported in [34], show excellent agreement between
experiment and simulation. More recent neutron scattering experiments on Ho2Sn2O7 show
similar results [38]. Such comparison between theory and experiments for Dy2Ti2O7 is
more difficult due to the large neutron absorption cross section of naturally occurring Dy
isotopes. Work in that direction using isotopically enriched samples with the 162Dy isotope is
in progress [78, 79].

2.2. Pauling’s entropy

Numerical integration of the specific heat divided by temperature can be performed to determine
the entropy of the dipolar spin ice model. Specifically, the entropy difference between
temperature T1 and T2, S(T2) − S(T1), can be calculated using the thermodynamic relation

S(T2) − S(T1) =
∫ T2

T1

C(T )

T
dT . (5)

The results for Dy2Ti2O7 are illustrated in figure 3(b). The entropy recovered from T = 0.4 K,
where C(T ) is very small, up to a temperature T = 10 K is S(T = 10 K) − S(T ≈ 0) ≈
3.930 J mol−1 K−1. As we can see in figure 3(b), the Monte Carlo data for S(T ) at T = 10 K
are slightly below Pauling’s value R{ln(2)− (1/2) ln(3/2)}. To perform the calculation of the
recovered entropy from T = 10 K up to ∞, we extrapolate the specific heat C(T ) for T > 10 K
by matching the Monte Carlo value of C(T ) at T = 10 K with the 1/T 2 high temperature
paramagnetic temperature regime, C(T ) = C∞/T 2 for T > 10 K. This gives a value C∞ =
29.015 J mol−1 K and an extra entropy of S(T = ∞) − S(T = 10) = 0.145 J mol−1 K−1,
and hence a value S(T = ∞) − S(T ≈ 0) = 4.075 J mol−1 K−1, in exceedingly close
agreement with Pauling’s value, 4.077 J mol−1 K−1. Hence, we find that the simulation with
the appropriate experimental parameters retains Pauling’s entropy (equation (1)), similar to
what is found experimentally for Dy2Ti2O7 (figure 3(b) and in [30]). A similar experimental
procedure was carried out using the magnetic contribution of the specific heat data of Ho2Ti2O7,
also giving a residual entropy close to Pauling’s entropy [35].

While the above conventional Monte Carlo simulations of the model Hamiltonian for the
spin ice compounds, equation (2), yields a reasonably successful quantitative theory of spin
ice behaviour in Ising pyrochlore materials, there still remains the second question (No 2,
section 1.2) as to why dipolar interactions, despite their anisotropic and long range nature,
do not (appear to) lift the macroscopic degeneracy associated with the ice rules and select an
ordered state. As explained in the next section, in the case of the simulations, the answer lies in
the implementation of local single spin flip dynamics in the Metropolis Monte Carlo algorithm.

3. Dynamical freezing and loop moves in Monte Carlo simulations

The first attempt to address the question of long range order in dipolar spin ice was an
investigation of the soft modes (i.e. critical modes or ordering wavevectors) accessible to
the model within the context of mean field theory [52, 53]. This mean field theory suggests
that, from the point of view of a strictly equilibrium (statistical mechanics) magnetic ordering
phenomenon, the dipolar spin ice model of equation (2) should be a rather conventional
system with a single, well defined ordering wavevector, q = (0, 0, 2π/a), and staggered
magnetization order parameter. If this were the case, a simple zero-temperature ground state
permanent moment structure, where 〈Si 〉 = 1 at each site, could be constructed using solely
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Figure 9. (a) The single spin flip Monte Carlo step acceptance rate A(T ) for a simulation of
Dy2Ti2O7. The simulation becomes frozen when the acceptance rate falls to zero. (b) The logarithm
of the acceptance rate plotted versus inverse temperature, minus some freezing temperature Tf ,
follows a Vogel–Fulcher type of law.

this critical ordering wavevector q and critical modes (i.e. eigenvectors of the Fourier transform
of the exchange plus dipole interaction matrix). The question, addressed in this section, then
becomes: why do Monte Carlo simulations of the dipolar spin ice model, or in fact the real
spin ice materials themselves, not develop the long range ordered phase predicted by mean
field theory?

3.1. Dynamical freezing in conventional single spin flip Monte Carlo simulations

The problem of dynamical freezing in the above simulation of the dipolar spin ice model turns
out to lie in the local single spin flip dynamics employed within the Metropolis algorithm
and, similarly, the local spin dynamics at play in the real materials. As we will show below,
Monte Carlo simulations of the dipolar spin ice model using single spin flips experience a
dynamical freezing at low temperatures. This arises due to the existence of large energy barriers
separating distinct quasi-degenerate spin ice configurations,which prevent the simulations (and
presumably the real materials) from finding their true energetically favoured long range ordered
ground states (see [80] for a related problem).

Observation of the acceptance rate A(T ) (percentage of accepted Monte Carlo steps)
of the dipolar spin ice simulations makes it immediately apparent that out-of-equilibrium
freezing occurs at low temperatures, that is below T ∼ 0.4 K (as illustrated in figure 9(a))
for the Jnn and Dnn parameters appropriate for Dy2Ti2O7. Figure 9(b) shows that A(T ) can
be parametrized by a Vogel–Fulcher temperature dependence as found in numerous freezing
phenomena: A(T ) ∝ exp(�/(T − Tf)), where the freezing temperature, Tf , is introduced in
an ad hoc fashion. In figure 9(b), � = 1 K.

It is clear that in order to investigate the existence of a true energetically favoured ground
state in the dipolar spin ice model, a standard Monte Carlo simulation employing local single
spin flip dynamics is inadequate. Indeed, as figure 9 shows, these dynamical processes are
frozen out at T just slightly below 0.4 K for a model of Dy2Ti2O7. For Jnn and Dnn appropriate
to describe Ho2Ti2O7 [34], the single spin flip Monte Carlo acceptance rate falls below 10−6

at a temperature near 0.6 K. Without ascribing any deep significance to it, it is interesting to
note that this freezing out in the simulation at 0.4 and 0.6 K corresponds rather closely to the
temperatures at which freezing is found in Dy2Ti2O7 [42] and Ho2Ti2O7 [41], respectively.
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This freezing out occurs due to large free energy barriers separating the (almost) degenerate
ice rule states, which develop rapidly at a temperature of order Tpeak (where the specific
heat shows a maximum), and which are associated with introducing a single spin flip to a
tetrahedron obeying the ice rules. As discussed above, and further supported by mean field
calculations [52, 53], the effective (ferromagnetic) nearest neighbour interaction Jeff favours
the ice rule configuration. As the temperature drops, the Boltzmann weight exp(−4Jeff/T )

suppresses the probability that a single spin flip will take a given tetrahedron into an
intermediate, thermally activated configuration not obeying the ice rules. Thus single spin
flip Monte Carlo moves are, for all practical purposes, frozen out and dynamically eliminated
within the simulation when T � Jeff .

3.2. Loop moves in Monte Carlo simulations

In order to explore the low temperature ordering properties of dipolar spin ice, one needs a
Monte Carlo algorithm with non-local updates that effectively bypass the energy barriers that
separate nearly degenerate states and allows the simulation to explore the restricted ice rule
phase space that prevents ordering in the model [56, 57]. In other words, we employ non-local
dynamical processes to restore ergodicity in the Monte Carlo simulation, and then use this
new algorithm to explore and characterize the long range ordered state that arises out of the
ice rules manifold and which is energetically favoured by the dipolar spin ice model.

We first identify the true zero-energy modes that can take the near neighbour spin ice model
from one ice state to another exactly energetically degenerate ice state. An example of these
zero modes, or loops, is shown in figure 1. We take as an initial working hypothesis that in the
dipolar spin ice model, with interactions beyond nearest neighbour, the system freezes into an
ice rule obeying state. This is indeed what we found: in all of the tests performed on the dipolar
spin ice model, simulations using conventional single spin flips always froze out into an ice rule
obeying state with no ‘defects’ (by defects we mean violations of the Bernal–Fowler ice rules).
With interactions beyond nearest neighbour, these loop moves become quasi-zero modes that
can take the dipolar spin ice model from one ice rule state to another without introducing spin
defects into tetrahedra in the lattice. This allows all of the quasi-degenerate spin ice states to
be sampled ergodically, and facilitates the development of a long range ordered state by the
system at low temperatures.

Within the Monte Carlo simulation, we use the Barkema and Newman [54, 55] loop
algorithm originally designed for two-dimensional square ice models, and adapt it to work in
a similar manner on the three-dimensional pyrochlore lattice. In the context of square ice, we
tested two kinds of loop algorithms, the so-called long and short loop moves. In the square
ice model, each vertex on a square lattice has four spins associated with it [57]. The vertices
are analogous to tetrahedron centres in the pyrochlore lattice. The ice rules correspond to
‘two spins pointing in, two spins pointing out’ at each vertex. In the Newman and Barkema
algorithm, a loop is formed by tracing a path through ice rule vertices, alternating between
spins pointing into and spins pointing out of the vertices. A ‘long loop’ is completed when
the path traced by the loop closes upon the spin from which it started. A ‘short loop’ is
formed whenever the path traced by the loop encounters any other vertex (tetrahedron) already
included in the loop—excluding the dangling tail of spins (figure 10).

We now generalize the Barkema and Newman loop algorithm for our study of the three-
dimensional pyrochlore lattice spin ice problem. In this system, the smallest complete loop
that is a zero mode on the pyrochlore lattice consists of six spins (see figure 1). Such a loop for
spin ice was previously identified by Bramwell and Harris [22] and also by Anderson [23] (see
footnote 4) in the context of the spinel lattice. However, using the above loop algorithm, much
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Figure 10. Long and short loops formed by the Newman and Barkema algorithm [54, 55] on a
square ice lattice. Vertices are represented by points where lattice lines cross. Each vertex has two
spins pointing in and two spins pointing out; however, for clarity, only spins which are included in
the loops are shown. Starting vertices are indicated by large black dots. On the left is an example
of a long loop, which is completed when it encounters its own starting vertex. On the right is a
short loop, which is complete when it crosses itself at any point. Dark grey lines outline completed
loops. The excluded tail of the short loop is shown in light grey.

larger loops are possible. When used with the pyrochlore lattice (figure 1), such a loop must
pass through two spins on each tetrahedron. A loop always ‘enters’ a tetrahedron through an
inward pointing spin and ‘leaves’ a tetrahedron through an outward pointing spin. The periodic
boundary conditions of the lattice may also be traversed with no adverse consequences. If we
form a closed loop in this manner, and each spin is reversed on it, the entire system stays in
an ice rule state. However, small dipole–dipole energy gains or losses may be incurred due
to configurational differences between the old and the new ice rule state. These small energy
changes caused by the loop moves are evaluated via a Metropolis algorithm within the Monte
Carlo simulation. Specifically, a loop move that takes the system from one ice rule state to
another one of lower energy is automatically accepted, while a loop move that takes the system
to a higher energy ice rule state (with energy difference δE between the two states) is accepted
with exp[−δE/(kBT )] > rnd, where rnd is a random number taken from a uniform distribution
between 0 and 1 [54, 55].

Before using them in a full-scale Monte Carlo simulation, the long and short loop
algorithms were subjected to a variety of characterizing tests on the three-dimensional
pyrochlore lattice [57]. The first test is a study of the relative speed (measured by CPU
time) of the algorithms for different sized lattices. As reported in [57], it is found that the
small loop algorithm creates loops that approach a finite size limit as the system size increases.
The long loop algorithm continues creating larger and larger loops, that scale approximately
linearly with the number of spins in the simulation cell. This forces the algorithm to become
drastically slower for the larger system sizes considered.

Second, tests were carried out to investigate how the two different loop algorithms handle
defects that break the ice rules on a tetrahedron. As we know, above the ‘spin ice peak’ in the
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Figure 11. Preliminary data for the low temperature magnetic specific heat (a) and energy (b) of
the dipolar spin ice Monte Carlo simulation, system size L = 3, with simulation parameters set for
Dy2Ti2O7. The data represent an average taken over approximately 105 production Monte Carlo
steps. Closed circles are data from a simulation of the short loop algorithm; open squares are data
obtained using the long loop algorithm. Low temperature features are discussed in the next section.

specific heat of the dipolar spin ice model, the ice rules (two spins pointing into a tetrahedron,
two spins pointing out) are generally not obeyed. However, to retain detailed balance, the loop
algorithm attempts to form loops at temperatures above the onset of spin ice correlations. The
attempt to create a loop is simply aborted in the case where the loop path encounters a defect
(either a three-in and one-out vertex, or an all-in or all-out vertex). The simulation does not flip
any spins on an aborted loop, and the Metropolis algorithm is not employed in this case. As
reported in [57], the influence of ice rule defects on loop algorithm performance is significant.
Within the long loop algorithm, the inclusion of only one defect spin per one thousand spins
in the system causes almost half of all loops which are attempted to be aborted on the grounds
that they have encountered the defect, with efficiency decreasing drastically as more defects
are included. In contrast, the short loop algorithm remains 87% efficient with the inclusion of
one defect in one thousand, and retains an efficiency that is significantly higher than the long
loop algorithm as more defects become present in the system [57].

We used both algorithms to perform a true finite temperature Metropolis Monte Carlo
simulation of the dipolar spin ice model. The two algorithms were implemented separately,
and simulations ran using the regular procedure (cooled slowly from a high temperature,
equilibrating carefully at every temperature step). Examples of our preliminary Monte Carlo
results for both the short and long loop are given in figure 11. The data in this figure have
relatively low statistics, only 105 Monte Carlo production steps per spin, where each step
consists of a local (single spin) update for each spin and a single loop move. Regardless
of this, it is clear that the short and long loops promote roughly the same thermodynamic
behaviour in the Monte Carlo simulation. The low temperature features (specific heat peak
and energy discontinuity at T ≈ 0.2 K) of figure 11 are induced in the same manner by
both algorithms. Further, additional runs (not illustrated) employing different numbers of
equilibrium and production MC steps reproduced the results, albeit with a strong effect on the
error bars (figure 11(a)). These features will be discussed in much more detail in section 4.
Since the long and short loops display equivalent results in the Monte Carlo approach, we
are free to choose between the two algorithms based solely on their performance properties
measured above. As alluded to above and detailed in [57], the short loop algorithm works
more efficiently within the requirements of our simulation. However, the disadvantage of
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Figure 12. The Monte Carlo acceptance rate for the short loop algorithm (squares) as compared
to the single spin flip algorithm (curve), for a simulation using Dy2Ti2O7 parameters. Acceptance
rates were calculated as percentages of attempted Monte Carlo steps (MCS).

using the short loop algorithm is that each loop does not cover as large of a percentage of spins
within the lattice. It is not clear to us, without investigating the computational performances
(i.e. autocorrelation times) of both algorithms in much more quantitative detail,whether a small
number of long loops is better at bringing the system to equilibrium than a larger number of
short loops for fixed available CPU time resources. However, with the additional observation
that the long loop algorithm can pass over itself a number of times during its creation,effectively
losing additional computational efficiency in this manner, we ultimately choose to perform the
majority of the simulations on the dipolar spin ice model using the short loop algorithm.

With the short loop algorithm chosen for the simulations,we re-investigate the Monte Carlo
Metropolis algorithm acceptance rate. Since each loop successfully created (i.e., not aborted
by encountering an ice rule defect) by the short loop algorithm is still subject to rejection by
the Metropolis condition on the basis of its change in system energy, we expect the maximum
acceptance rate to be somewhat less than the maximum efficiency of the algorithm given
above. Results for the loop acceptance rate are shown in figure 12. Clearly, the loop algorithm
becomes effective in the temperature range where the spin ice manifold is well developed,
and the single spin flip algorithm loses its ability to explore all possible configurations of the
system. Above approximately 1 K, the number of accepted loops is very low, due to the fact
that the system is not entirely in an ice rule configuration. As the simulation is slowly cooled,
ice rule constraints begin to develop, and the loop algorithm begins to work efficiently, moving
the system between different ice rule states. In figure 12, a sharp drop is observed in the loop
acceptance rate at approximately 0.18 K. As discussed in the next section, this corresponds to
the temperature where a phase transition develops in the system, which locks the system into
a long range ordered state.

4. Loop Monte Carlo investigation of the transition to long range order

As suggested by the results above, the short loop algorithm is successful in restoring ergodicity
in the simulation. As a consequence of this, we observe a low temperature phase transition in
the model. The most familiar and robust indicator of a phase transition is a finite size remnant
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Figure 13. The low temperature magnetic specific heat (a) and energy (b) of the dipolar spin ice
Monte Carlo simulation, system size L = 4, with simulation parameters set for Dy2Ti2O7. Closed
circles are simulation data run with the short loop algorithm; open triangles are data obtained
using the single spin flip Metropolis algorithm. In the inset of (b), the energy shows an apparent
discontinuity at a critical temperature Tc ≈ 0.18 K. The broad feature in the specific heat at T ≈ 1 K
indicates the rapid development of the spin ice rule obeying states. The sharp feature at Tc is the
appearance of a phase transition to a ground state being made (dynamically) accessible via the
non-local loop dynamics. Note that these results have higher statistics than those for figure 11,
specifically, 1×105 equilibration and 3×105 production Monte Carlo steps were used. In addition,
the system size has been increased from L = 3 to 4. Also, note that the location of the specific
heat peak is at roughly the same temperature, but is narrower than for L = 3, indicating a finite
size effect on the singular behaviour of C(T ).

of a singularity (divergence or discontinuity) in some thermodynamic quantity at the transition
temperature Tc. For example, in the simulation of Dy2Ti2O7, a sharp cusp in the specific heat
is observed at a temperature below the spin ice peak (see figure 13(a)). The feature in the
specific heat and the abrupt drop in energy at the same temperature (figure 13(b)) give good
preliminary evidence that the loop algorithm is successful in allowing a phase transition to
occur at a temperature of Tc = 0.18 K. This is the same temperature as the loop algorithm
acceptance rate goes to zero at in figure 12. The energy curve shows a discontinuous drop at Tc

(i.e. a latent heat) for large lattice sizes (figure 13(b)), suggesting a first order phase transition.
The long range ordered state that develops is observed to be independent of the system size
simulated. In the remainder of this section, we attempt to characterize this state and the phase
transition that leads to it. The first step is to identify the order parameter associated with the
low temperature ordered state.

4.1. The order parameter

Direct inspection of the spin directions at T < 0.18 K reveals that the ordered state is a long
range ice rule obeying state with zero magnetic moment per unit cell and commensurate with
the pyrochlore cubic unit cell (see figure 4). This state corresponds to the critical mode found
in the mean field calculation of [52, 53]. It is also the same as the ground state found in a
previous Monte Carlo simulation using truncated dipolar interactions [33]. There are twelve
symmetrically equivalent spin configurations for the ground state as explained below, two for
each cubic axis direction and their spin reversed states. The ordering wavevector q lies parallel
to one of the cubic axis directions, specifically q = (0, 0, 2π/a) or one of its symmetrically
equivalent directions. To construct the ordered state, first consider a starting tetrahedron with
its six possible ice rule states. For a given ordering wavevector q, this tetrahedron selects one of
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Figure 14. The q = (0, 0, 2π/a) order parameter. Curves are shown for system size L = 2, 3
and 4.

the four possible spin configurations (two independent configurations and their spin reversals,
Sa

i → −Sa
i ) with a total magnetic moment for the tetrahedron perpendicular to q. The entire

ordered state may then be described by planes (perpendicular to q) of such tetrahedra. The
wavelength defined by this q physically corresponds to antiferromagnetically stacked planes
of tetrahedra, which means that a given plane has tetrahedra of reverse spin configuration to
the planes above and below it. Hence, we construct the multicomponent order parameter

Ψm
α = 1

N

∣∣∣∣∣
N/4∑
j=1

4∑
a=1

σ a
j e(iφm

a +iqα ·R j )

∣∣∣∣∣ . (6)

This type of labelling is natural given that the pyrochlore lattice can be viewed as an FCC
lattice with a ‘downward’ tetrahedral basis (figure 1). Thus j labels the FCC lattice points of
the pyrochlore lattice and the index a sums over the four spins comprising the basis connected
to each j . The index α labels the three possible symmetry related q ordering wavevectors.
For a given qα , as described above, there are two ice rule configurations and their reversals
which can each form a ground state. Thus m = 1, 2 labels these possibilities with the phase
factors {φm

a }, describing the given configurations m. Each Ising variable σ a
j has a value +1 or

−1 when a spin points into or out of its downward tetrahedron j , respectively.
As written in equation (6), Ψm

α has six degenerate components, each of which can take
on a value between 0 and 1. Upon cooling through the transition, the system selects a unique
ordered configuration, causing the corresponding component of Ψm

α to rise to unity and the
other five to fall to zero (provided that the finite size system is simulated over a timescale less
than the ergodic timescale where full spin symmetry is restored). The component which rises
to unity is equally likely to be any one of the six, selected at random through spontaneous
symmetry breaking.

Figure 14 is a plot of 〈�〉 for three system sizes, where

〈�〉 =
√√√√ 2∑

m=1

3∑
α=1

(
Ψm

α

)2
(7)

is the magnitude of the multicomponent order parameter. These three curves illustrate
important finite size effects for 〈�〉. For T < Tc the different lattice sizes produce identical
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order parameters. By contrast, 〈�〉 for the smaller lattice size displays pronounced rounding
near Tc and an increased residual value for large T . The larger lattice size produces an order
parameter with a clear discontinuity at Tc. This discontinuity in the order parameter combined
with the discontinuity of the total energy in figure 13(b) can be viewed as strong preliminary
evidence for a first order transition.

We now argue the need to study this phase transition with greater numerical accuracy.
This is necessary in order to confirm its first order nature. More importantly, once this is done,
we want to use the data to confirm the full recovery of Pauling’s entropy through an estimation
of the latent heat at the transition.

4.2. Evidence for a first order transition

To begin, we note that there are a number of criteria at one’s disposal for demonstrating the
occurrence of a first order transition in a Monte Carlo simulation. In particular:

(i) The order parameter 〈�〉 should have a clear discontinuity at Tc.
(ii) The energy probability histogram, H (E), should have a double peak at Tc, which identifies

the coexistence of two distinct phases at Tc.
(iii) There should be a latent heat at the transition, identifiable by a discontinuity in the internal

energy for large system sizes.
(iv) In the Monte Carlo simulation, the height (maximum) of the specific heat, Cpeak, and the

magnetic susceptibility, χpeak, should be proportional to the simulation volume:

Cpeak, χpeak ∝ a + bLd (8)

where a and b are constants and d is the dimension of the lattice, in our case equal to three
(d = 3).

(v) The minimum of the fourth order energy cumulant [81],

V = 1 − 〈E4〉
3〈E2〉2

, (9)

should vary as

Vmin = V0 + cL−d (10)

where V0 �= 2/3.
(vi) The temperature Tpeak(L) at which Cpeak or χpeak has a maximum should vary with the

simulation volume as

Tpeak(L) = Tc + cL−d (11)

where c is a constant and Tc = Tpeak(L → ∞).

We have already confirmed the first condition of our list. To check for the second condition
the energy probability histogram was calculated by binning the simulation energy values for
every Monte Carlo step as the system passed through the transition from higher to lower
temperatures (figure 15). Above Tc, we observe a single peak Gaussian-like distribution of
energies. At Tc, the energy probability distribution shows a double peak, characteristic of the
coexistence of two phases found at a first order phase transition. Below Tc we would normally
expect to see a Gaussian peak. However, in our case, the histograms below Tc are distorted by
the accumulation of energies into the lowest bins due to the proximity of the transition to the
ground state. At zero temperature, we expect all of the energies to lie in the bin for the lowest
energy.
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Figure 15. The energy probability distribution histogram for three temperatures: T = 0.178 K,
T = 0.180 K (Tc) and T = 0.182 K. For T > Tc (filled circles), a single peaked Gaussian histogram
is present. At the transition temperature (hashed rectangles), a second peak appears which has a
lower mean energy. As the temperature falls below Tc (filled triangles), the peak with the higher
mean energy disappears and the system energy eventually gathers in the lowest bin.

Figure 16. Details of the simulation energy near the transition for different system sizes.

The next condition on our list is the observation of a latent heat at the transition. Figure 16
shows the energy near the transition for three different system sizes. A clear discontinuity
develops as we increase the system size. The energy discontinuity, �E , as read off from this
graph for L = 4, is

�E ≈ 0.248 J mol−1. (12)

This behaviour is also consistent with the transition being first order. Below, we compare this
�E to the latent heat released from the entropy jump at the transition calculated through other
means. Another calculation of the latent heat at the transition comes from the finite size scaling
of condition (iv) above [81]:

Cpeak ≈ (�E)2

4kBT 2
c

Ld + a (13)
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where Ld is the system volume as before and a is the intercept of the graph of Cpeak(L) versus
L to test for condition (iv), which we now discuss.

When attempting to quantify the relationships in conditions (iv)–(vi) on our list, we
notice a problem. The extremely sharp nature of the transition makes accurate estimations
for these quantities almost impossible using a traditional temperature cooled MC simulation
of the hybrid single spin flip–loop algorithm. The reason is that the transition temperature
region is narrow, and first order metastability effects are strong, so obtaining accurate data
for quantities such as Cpeak and Vmin very near to Tc is extremely difficult. As shown in
figure 15, the energy probability histogram near a first order transition displays a double
hump. The energies that occur between these humps correspond to system configurations
that are strongly suppressed by the Boltzmann probability distribution near the transition.
We call these ‘interface configurations’ [82]. Traditional Monte Carlo simulations try to
‘avoid’ these interface configurations as the system is cooled through the transition, because
of their suppression by the Boltzmann factor which is the basis of the Metropolis condition.
Therefore, the simulation often behaves poorly in this region, moving quickly through interface
configurations to find more favourable configurations nearby in configuration space. This can
lead to erratic behaviour and poor statistics in thermodynamic quantities of interest near the
phase transition, thereby reducing the numerical accuracy of the quantities used in finite size
scaling.

To overcome this problem, Berg and Neuhaus [82] proposed the multicanonical method,
which is designed to enhance configurations that have energies which occur between the
two humps of the probability distribution. If these interface configurations are artificially
enhanced, the simulation does not avoid this energy range as strongly and better statistics can
be obtained. The version of the multicanonical Monte Carlo algorithm that we use is that
proposed by Hansmann and Okamoto [83], originally developed to be used in the context of
protein folding simulations. The core of the method is:
Perform Monte Carlo simulations in a multicanonical ensemble instead of the usual canonical
ensemble. Then, obtain the relevant canonical distribution by using the histogram reweighting
techniques of Ferrenberg and Swendsen [84]. From this, calculate the thermodynamic
quantities of interest.

In the multicanonical ensemble, we define the probability distribution by

pmu(E) = g(E)wmu(E)

Zmu
= constant (14)

where g(E) is the density of states,wmu(E) is the multicanonical weight factor (not temperature
dependent) and Zmu is the associated partition function. The distribution is constant, meaning
that all energies have equal weight, which sometimes leads to the name ‘flat histogram’ method.
This flatness is important because it ensures that configurations in the interface region of the
transition are not suppressed.

Unlike for the canonical ensemble, the multicanonical weight factor wmu is not a priori
known. This turns out to be the crucial step of this scheme: finding an accurate estimator of
wmu that makes the distribution pmu(E) flat over the energy range of interest. The details of
how to do this are somewhat involved, and will not be explicitly outlined here. The reader is
referred to the relevant technical references for details [57, 83]. Our procedure follows that
of [83] very closely.

Assuming that we can find a good estimator of wmu, our method proceeds as follows:

(i) We find an accurate estimator of the multicanonical weight factor such that pmu(E) is
reasonably flat over an energy range that includes the transition interface.
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Figure 17. Specific heat curves over the transition temperature, for L = 2 (a) and L = 3 (b) system
sizes. Closed circles represent data obtained with Ferrenberg and Swendsen’s (FS) histogram
reweighting technique. Open triangles represent data taken using a traditional temperature cooled
Monte Carlo simulation, and are plotted without error bars in (b) for clarity.

(ii) With this weight factor we perform a multicanonical simulation at one given temperature
T slightly higher than Tc.

(iii) During this simulation run, we gather statistics for the physical variables of choice (for
example, the energy E). These variables are weighted according to the multicanonical
distribution.

(iv) From this single simulation, we then obtain the Boltzmann-distributed variables at any
temperature for a wide range of temperatures using a reweighting technique.

We use the reweighting technique proposed by Ferrenberg and Swendsen [84], which
allows us to transform, or reweight, data obtained from another distribution (in our case the
multicanonical distribution) to the relevant Boltzmann distribution,at some inverse temperature
β. We use this to obtain an estimate for a given physical quantity in the canonical distribution.

We collect data within the multicanonical distribution and use them to calculate the specific
heat for the dipolar spin ice model. For the smallest system size considered, we accurately
reproduce the specific heat over the transition using the flat histogram method. Figure 17(a)
shows a comparison between the specific heat of an L = 2 system obtained using the histogram
method at one temperature,and the traditional Monte Carlo procedure with 8×105 equilibration
steps and 2 ×106 data production steps for every temperature point. The CPU time that it took
to get the histogram data was a small fraction of the time it took to obtain the regular Monte
Carlo data. Figure 17(b) is a similar result for a larger system size, L = 3. The traditional
Monte Carlo data were taken with 5 × 105 equilibration steps and 1 × 106 data production
steps. The histogram data were obtained in the same amount of CPU time as for the L = 2
histogram data, and it was only slightly more difficult to find a good estimate for wmu(E). The
poor quality of the traditional Monte Carlo Metropolis data for L = 3 stands in stark contrast
to the smooth data obtained using the multicanonical simulation.

Unfortunately, one difficulty with the multicanonical algorithm used here is that, in general,
as the system size is increased, it becomes increasingly difficult to obtain a good estimate for
a wmu(E) that would give a flat pmu(E). The critical temperature, Tc, of the transition seems
to be the quantity most sensitive to variations in the flatness of pmu(E). In contrast, the height
of specific heat peak is fairly accurately determined for simulation sizes L = 2, 3, 4 and 5
(figure 18), showing only a weak sensitivity to the flatness of pmu(E).
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Figure 18. The specific heat of the transition to long range order, for system sizes L = 2, 3 and 4.
It was found that peak heights for these system sizes did not vary significantly with the flatness
of pmu(E). Critical temperatures (Tc) were more sensitive to the flatness of the multicanonical
distribution, and hence were more difficult to estimate than Cpeak .

Figure 19. The finite size scaling fit for the specific peak heights of the ordering transition. Data
points represent the mean Cpeak value for a given L . Error bars show one standard deviation.

The aforementioned error associated with Tc for the L = 4 peak, as determined from
simulations, is of the order of 0.04 K, and becomes increasingly more drastic for the larger
system sizes. The variation in the height of the specific heat was found to be much less.
Nevertheless, to combat any minor variation in peak height and obtain accurate finite size
scaling results, a statistical averaging was done on several (∼10) multicanonical weighting
factors to obtain values for Cpeak. These results are plotted in figure 19. A straight line fit to
the data using linear regression gives

Cpeak = 0.8924L3 − 3.149. (15)

The L3 dependence of Cpeak(L) shows that the finite size scaling is consistent with that expected
for a first order transition. Also, as a second estimator of the latent heat, we can use the slope
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of this line and equation (13) to extract �E . Doing so we deduce a latent heat of

�E ≈ 0.245 J mol−1, (16)

consistent with the value obtained in figure 16 (for the L = 4 system) from reading directly
off from the energy graph (see equation (12)).

This completes our study of the nature of the ordering transition in dipolar spin ice. As
we have shown, the discontinuity in the order parameter, the release of latent heat, the double
peaked energy probability distribution and the finite size scaling of the specific heat peak all
give consistent and compelling evidence for the transition being first order. As the technical
details concerning this transition are understood, we can proceed to study where it, and the
long range ordered state which results from it, stand in our broader picture of ground state
entropy found in experiments and in standard single spin flip simulations of the dipolar spin
ice model.

4.3. Recovery of Pauling’s entropy

Since we have confirmed the first order nature of the transition, the configuration of the ordered
state, calculated the latent heat and obtained reliable data for the specific heat through the
transition, we are in a position to recalculate the total entropy that the dipolar spin ice model
releases as it is cooled to low temperatures. This calculation must be done carefully. We know
that in an infinite system, a first order transition is characterized by a cusp in the specific heat.
If the transition is temperature driven, as in our case, this first order singularity is the latent
heat. For an infinite system going through a first order transition, thermodynamics gives

�S =
∫ T −

c

0

C<

T
dT +

∫ ∞

T +
c

C>

T
dT +

�E

T
, (17)

where �E/T is the latent heat contribution to the entropy (see figure 16), and T −
c and T +

c
are the temperature limits asymptotically close to Tc, below and above Tc, respectively (see
figure 16).

To estimate a value for the entropy, we consider the system size L = 4 which has good
statistical data for the widest temperature range. We integrate the low temperature data for
the specific heat in figure 18 divided by temperature obtained from the histogram reweighting
technique (up to T ≈ 0.21). For T > 0.21 K we use our regular temperature cooled Monte
Carlo data (canonical loop + single spin flip) for the integration above this point, and up to
10 K, giving S(T = 10) − S(T ≈ 0) = 5.530 J mol−1 K−1. To integrate up to T = ∞,
we follow the same high temperature extrapolation procedure as was described in section 2,
giving S(T = ∞)− S(T = 10) = 0.145 J mol−1 K−1. Doing this simple calculation, we find
a total recovered entropy of

S(T = ∞) − S(T ≈ 0) = 5.675 J mol−1 K−1, (18)

less than 2% below the expected maximum entropy value of R ln 2 = 5.764 J mol−1 K−1. The
inset of figure 20 clearly shows the entropy recovered near the low temperature transition.

By considering the entropy recovered by the integration of the finite size system specific
heat over the transition (inset, figure 20), we confirm that it is approximately equal to the
value of the entropy that we would expect to recover from the latent heat of an infinite system.
Using our latent heat calculations above (equations (12) and (16)), this value is approximately
�STc = �E/Tc ≈ 0.2465/0.180 = 1.37 J mol−1 K−1, in good agreement with the jump in
S(T ) in the inset of figure 20.
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Figure 20. The entropy calculated from integrating the simulated specific heat, as explained in the
text. The entire value of the entropy for the system (R ln 2) is recovered in the high temperature
limit. The inset shows the details of the entropy recovered by the transition to long range order.

4.4. Summary

Taking all indicators together, we have demonstrated here that the transition to long range order
at 180 mK recovers all residual Pauling entropy of the dipolar spin ice model. Thus we can
assert that the degeneracy associated with the spin ice model, and the corresponding value of
the zero-point entropy, is lifted due to perturbations beyond nearest neighbour dipole–dipole
interactions, if equilibrium can be maintained at sufficiently low temperatures.

To summarize our results for this section, we refer the reader to the dipolar spin ice Monte
Carlo phase diagram, figure 5. As illustrated there, the transition between the spin ice phase
(which retains Pauling’s entropy) and the q = (0, 0, 2π/a) ordered phase is independent
of the strength of Jnn. This is consistent with our understanding that the long range order
results from perturbative interactions beyond nearest neighbour, caused by the long range
dipolar interaction. This is also what mean field theory [52, 53] finds in the spin ice regime
(Jnn/Dnn > −0.905). We find that this first order line also runs slightly up the boundary
between the AF q = 0 ordered phase and the higher temperature paramagnetic phase,
and that a tricritical point separates these two regions of the line, occurring near the value
Jnn/Dnn ∼ −1.1.

Due to the near vertical nature of the phase boundaries in this region, simulations run
at a finite T and varying Jnn help better map out the low temperature phase lines of interest.
However, using this method, we observed that the simulations could easily get ‘stuck’ in
the previous spin configuration (either spin ice disordered, q = (0, 0, 2π/a) or AF q = 0)
when crossing the vertical phase boundary. This history dependence is illustrated in the
phase diagram as hysteresis at low temperatures, mainly between the long range ordered
q = (0, 0, 2π/a) and antiferromagnetic q = 0 phases. Regardless of this difficulty, we
have confirmed from direct Ewald energy calculations at zero temperature that the true zero-
temperature phase boundary between the q = (0, 0, 2π/a) and the AF q = 0 phases lies at
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Figure 21. The pyrochlore unit cell projected down the z axis. The symbols + and − represent the
z component of the spin ‘head’. The configurations are (a) q = 0 and (b) q = X. The large arrows
point in the (a) [100] and (b) [110] directions, and are included to aid in the discussion of ground
states in the next section. Note that q = X, although similar, is a spin ice state distinct from the
q = (0, 0, 2π/a) ordered state shown in figure 4. Specifically, the chains of spins parallel to the
[100] direction are staggered antiferromagnetically in the zero-field q = (0, 0, 2π/a) ground state
(figure 4), while they are ferromagnetically correlated and parallel to the field in the q = X state
of (b) above.

Jnn/Dnn = −0.905, in agreement with the results found in mean field [52, 53] and exact [85]
calculations.

5. Dipolar spin ice in a magnetic field

A very interesting problem that pertains to dipolar spin ice materials is their behaviour in an
external magnetic field, h. A number of recent experiments [58–60, 62, 78] have shown a rich
variety of new behaviour when spin ice materials are subjected to such a field, which warrants
some theoretical investigation [61, 86]. Although not all of the relevant experiments can be
described in this short section, we briefly outline some of the most important, referring the
reader to the reference list for further details on methods and results.

5.1. Experimental overview

The first experiments on spin ice materials in an applied magnetic field were performed by
Harris et al [21]. In a neutron scattering experiment, they applied a magnetic field of strength
2 T along the [110] direction of a single crystal of Ho2Ti2O7, and looked for signs of ordering.
They found scattering intensity features which suggest evidence of two ordered magnetic
structures, the so-called q = 0 and X phases (figure 21). As we will see below, these two
ordered structures are of importance in our study of the ground states of the dipolar spin ice
model.

An interesting set of early experiments were performed by Ramirez et al [30] and
Higashinaka et al [87], who subjected polycrystalline samples of Dy2Ti2O7 to a variety of
different field strengths. Ramirez et al presented evidence of phase transitions in a powder
sample, manifested as distinct features in the specific heat at

(i) 0.34 K for h > 1 T,
(ii) 0.47 K for 1 T � h � 3 T,

(iii) 1.12 K for h �= 0,

where we have used h to represent the magnitude of the applied field h. Higashinaka and co-
workers reproduced the basic features of the Ramirez et al results down to T ∼= 0.38 K [87],
confirming the existence of the two higher temperature peaks only. The search for a microscopic
explanation of these three peaks has been a driving force behind much of the experimental and
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theoretical work in this area over the past few years, and we discuss it further in the work that
follows below.

Another significant experimental study is the measurement of the single crystal
magnetization curves (M versus h) for the spin ice materials. Fukazawa et al performed
a number of experiments on single crystals of Dy2Ti2O7, obtaining magnetization curves for
the different applied field directions and a range of temperatures [58]. They showed that
magnetization data at 2 K were consistent with the behaviour predicted by the spin ice model,
in particular the limiting field (large h) values of the magnetic ‘anisotropy’ (which we illustrate
below). Very recently, measurements [59, 62] of the magnetization curves for h ‖ [111] (read
‘h parallel to the [111] crystal direction’) have uncovered a novel macroscopically degenerate
state corresponding to ice-like behaviour on the kagomé planes in the pyrochlore lattice [61, 86].

5.2. The Hamiltonian coupling to a magnetic field

We take into account the applied magnetic field h in the dipolar spin ice model with a simple
term added to the Hamiltonian (equation (2)),

H ′ = −
∑

i

h · Sa
i = −

∑
i

(h · ẑa)σ a
i . (19)

We work strictly with a classical Ising model and neglect any quantum transverse field
effects and perturbative changes to the moments arising in a strong field. In this classical
approximation, the field h couples to the spins through the simple scalar product in
equation (19). That is, we neglect small corrections to the energy coming from the very
small, though finite, local susceptibility perpendicular to the 〈111〉 direction. Also, we neglect
the quantum mechanical transverse field effect that would arise from admixing the doublet
ground state wavefunctions with that of the excited crystal field levels. For Ho2Ti2O7 and
Dy2Ti2O7, the first excitation gap is (very roughly) � ∼ 300 K [29]. For the magnetic
moments of approximately 10 µB for both Ho3+ and Dy3+, this means a ground state Zeeman
energy splitting of 12.8 K T−1. One can therefore initially neglect magnetic field, exchange
and dipole–dipole induced admixing for fields less than 10 T, assuming the worse case scenario
where the excited doublet was also split by about 10 K T−1.

To gain a theoretical understanding of the experimental behaviour mentioned above,
several insightful calculations are possible, using only this simple classical Hamiltonian and a
knowledge of the possible ground states of figure 21. First, a geometrical understanding of how
the magnetic field couples to classical spins on the pyrochlore lattice is desirable. We expect
that application of a magnetic field along the three principal symmetry axes of the crystal will
result in different spin–field coupling behaviour. To explore this, we begin by considering the
non-interacting limit (h → ∞ or Jnn, Dnn → 0). In this case, the only constraints on the spins
are the local 〈111〉 anisotropy and the coupling with the magnetic field. We can gain more
insight by viewing a projection of a tetrahedron down the cubic z axis as in figure 22.

For h ‖ [100], all four spins on a given tetrahedron are coupled with the field (i.e. all four
have a non-zero dot product in equation (19)). The expected lowest energy configuration in
the absence of spin–spin interaction is the one where all spins have their [100] components
aligned with the field. Knowing this, we can calculate the h → ∞ value for the M versus h
curves by considering the average moment M (in units of Bohr magneton per rare earth ion,
µB/R3+), in the direction of the field h ‖ [100]:

M(h → ∞) = 1

4
√

3

(
[111] +

[
111

]
+

[
111

]
+

[
111

]) · [100] · µ

= 1√
3

· µ ∼= 0.5774 · µ. (20)
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a) c)b)

Figure 22. A single tetrahedron projected down the z axis. The field directions are (a) h ‖ [100],
(b) h ‖ [110], (c) h ‖ [111], indicated by the large arrow outline. Small arrows represent dipole
moments coupled to the field. Empty circles represent decoupled spins.

Also, to calculate M in the appropriate units (µB/R3+, measured in experiments) one must
include the factor µ, which is the magnetic moment of the appropriate rare earth ion. If R is
Dy3+ or Ho3+, µ ≈ 10 µB. Note that, from figure 22(a), this lowest energy spin–field coupled
state is compatible with the ice rules. If we decorate the entire lattice with tetrahedra such as
this, we recover the q = 0 state of figure 21(a). This suggests that this ordered state should be
one of the ground states for the interacting dipolar spin ice model, with a sufficiently strong
external field h ‖ [100]. Indeed, this order has been observed experimentally [78] for samples
of Dy2Ti2O7.

For h ‖ [110], only two of the four spins on a tetrahedron couple to the field. One expects
that, with precise alignment of the sample, these other two spins would remain decoupled even
in the application of high magnetic fields. These decoupled spins are thus free to choose an
ordering pattern that satisfies their dipolar interaction. Because of the complexity of the dipolar
interaction, the ground state spin configuration is not immediately obvious from studying the
geometry. However, one expects any zero-temperature phase to be consistent with the ice rules
(see figure 22(b)). In the limit of very high applied field and perfect sample alignment, one
expects the magnetization to approach

M(h → ∞) = 1

2
√

3

(
[111] +

[
111

]) · 1√
2

[110] · µ

= 1√
6

· µ ∼= 0.4082 · µ. (21)

Finally, for h ‖ [111], all four spins on a tetrahedron are coupled to the field. An interesting
complication arises in this case due to crystal geometry; any high field phase of the material
will be inconsistent with the ice rules, and the spins will form a ‘three-in and one-out’ (or its
spin reverse) tetrahedral configuration (figure 22(c)). For zero temperature, both the long range
ordered ice rule state and the three-in and one-out state will exist for different field strengths.
For low magnitudes of h, we expect a competition between the exchange, dipolar and magnetic
field parts of the Hamiltonian. At low enough temperatures, one predicts [57, 59, 61, 62, 86] a
plateau to develop in the magnetization curve due to the tendency of each tetrahedron to stay
in the ice rules up to a critical field. If we couple three of the spins to the magnetic field, and
leave one to oppose the field but obey the ice rules, we find a magnetization of

M(h = ‘small’) = 1

4
√

3

(
[111] +

[
111

]
+

[
111

]
+

[
111

]) · 1√
3

[111] · µ
= 1

3 · µ ∼= 0.3333 · µ. (22)
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Figure 23. The T = 0 energies per spin of the three ice rule ordered states of the dipolar spin ice
model, as a function of applied internal field h = |h| along the (a) [100] and (b) [110] directions
for Jnn = −0.52 K and Dnn = 2.35 K (i.e. Ho2Ti2O7 parameters). The q = 0 and X structures
are illustrated in figure 21.

In the limit of very high applied field, we expect the spin that is coupled anti-parallel to the
field (in the case above, the last spin vector [111]) to break the ice rules, favouring minimizing
its energy with respect to the field. In this case the high field magnetization is

M(h → ∞) = 1

4
√

3

(
[111] +

[
111

]
+

[
111

]
+

[
111

]) · 1√
3

[111] · µ
= 1

2 · µ = 0.5 · µ. (23)

We find that our Monte Carlo simulation is successful in reproducing the high field limiting
values of the experimental M versus h curves [58]. In addition, we find that the Monte Carlo
simulation also reproduces the plateau expected for h ‖ [111] and low temperatures [57].
However, these large h results are easily obtainable for a nearest neighbour spin ice model
(Dnn → 0). The reader is referred to [57] and [58] for the detailed results of this study.

5.3. Ground state energies

A numerical calculation of interest that is easily performed is that of the Ewald energies of
the various ground state configurations that we have encountered so far in the dipolar spin ice
model. The spin ice configurations that we consider are both the q = 0 and X phases identified
by Harris [21], and the q = (0, 0, 2π/a) ground state identified previously in this work
(figure 4). In addition, we expect the ‘three-in and one-out’ state to become the lowest energy
state for some critical field along the h ‖ [111] direction. Figures 23 and 24 are the results
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Figure 24. The T = 0 energies per spin of the three ice rule ordered states and the three-in and
one-out spin state of the dipolar spin ice model as a function of applied internal field h along the
[111] direction. The q = X state becomes the ground state at 0.029 T. The three-in and one-out
configuration becomes the ground state at around 1.46 T, breaking the ice rules for each tetrahedron.
The q = X line is always 0.534 J mol−1 below the q = 0 line at any given field.

of these ground state energy calculations for a system size L = 4 and parameters appropriate
for Ho2Ti2O7 (Jnn = −0.52 K, Dnn = 2.35 K). As expected, we find the same qualitative
behaviour for calculations involving Dy2Ti2O7 parameters. Also, finite size corrections to the
energy calculations in figures 23 and 24 are very small, scaling away as 1/L3 (see appendix A).

Figure 23(a) confirms that the q = 0 configuration becomes the lowest energy state for
large field strength (h > 0.033 T) for h ‖ [100], as expected from the simple geometrical
considerations outlined above. Recall that in the h ‖ [110] case, there exist two decoupled
spins per tetrahedron, and subsequently no lowest energy configuration is obvious from the
geometric field coupling equation (19). However, one may anticipate that for h ‖ [110],
the decoupled spins (figure 22(b)) will order in ‘chains’ perpendicular to the [110] direction,
arranged in such a way as to partially satisfy the dipolar interaction. We find that this is precisely
the q = X state, which figure 23(b) shows to be the lowest energy state for h > 0.023 T.

Consequently, figure 23(b) has direct relevance to experiments by Fennel et al and Hiroi
et al that were performed on Dy2Ti2O7 with a magnetic field h ‖ [110] [60, 78]. Fennel
et al observed neutron diffraction patterns that showed Bragg scattering at q = 0 ‘points’ and
diffuse scattering at q = X ‘points’, but no true q = X long range order. They suggested that
this behaviour would arise from long range ferromagnetic order occurring in field coupled spin
chains (called α chains by Hiroi [60]), and short range ‘antiferromagnetic’ order occurring in
the field decoupled spin chains (β chains) [78]. In this argument, the true ground state is a
q = X structure—however, one that is possibly dynamically inhibited from being accessed on
experimental timescales.

Specific heat measurements by Hiroi et al were used to extract the specific heat
contributions of both the α chains and the β chains [60]. They suggest that the specific
heat due to the β chains resembles that which one would expect for a low dimensional spin
system without long range order. They also argue for the presence of geometrical frustration
in the triangular sublattice that contains the β chains. If such a frustration exists, it might be
expected to destabilize the ‘antiferromagnetic’ correlations between these chains that would
otherwise lead to q = X order. Therefore, Hiroi et al argued against the development of
true long range order for the system—rather that the β chains become effectively isolated and
behave as one-dimensional ferromagnetic systems without long range order in the ground state.
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At this point, figure 23(b) is consistent with the idea of long range q = X order for the
dipolar spin ice model with a magnetic field h ‖ [110]. As discussed elsewhere [88], finite
temperature Monte Carlo calculations on the dipolar spin ice model also support the idea that,
similarly to the development of q = (0, 0, 2π/a) order in the zero-field case, the development
of q = X order for h ‖ [110] may in some cases be dynamically inhibited in experimental
systems with local spin dynamics. A similar result has recently been obtained by Yoshida et al
in [63]. The failure of the ‘frustration’ of the β chain sublattice invoked by Hiroi et al [60]
to destroy the long range q = X order may be another example of the small energy scale left
over by the infinite range dipole–dipole energy (equation (2)), and why such interactions must
be handled carefully using techniques such as the Ewald method.

It should also be noted here that the q = 0 and X lines are parallel in figure 23(b) only
for samples that are perfectly aligned with h along the [110] crystal axis. This is an important
phenomenon that one must consider when comparing theory and experiment, as only a small
crystal misalignment will partially couple spins on the β chains to the field. Because precise
alignment of a crystal is often very difficult, the possibility of misalignment of the order of
a degree must be taken into consideration when studying single crystal data with h ‖ [110].
Repeating our ground state energy calculation for misalignment of one degree toward the [100]
direction, one would find a crossing of the q = X and 0 lines (not illustrated) at a field of about
1.3 T, the q = 0 configuration being of lowest energy above this field strength [57, 58].

We turn finally to the case of a field parallel to the [111] crystal axis. As figure 24 confirms,
the three-in and one-out spin configuration becomes the lowest energy state for large h ‖ [111].
Interestingly, the q = X state is the ground state for 0.029 T < h < 1.46 T. This is consistent
with the idea that the z component of the field for the [111] direction gives a zero net Zeeman
contribution to the unit cell for both the q = 0 and X spin configurations. Therefore, the only
energy scale difference left over between the two states comes from the [110] component of the
field, meaning that q = X will be slightly lower in energy than q = 0 (as in figure 23(b)) for
all h ‖ [111]. Most other features of the h ‖ [111] field (such as the intermediate field plateau
and the high field breaking of the ice rules) are readily explainable in a nearest neighbour spin
ice model without dipolar interaction; hence we will discuss them no further in this work [86].

5.4. Summary and open issues

As mentioned previously, the desire to explain the three field independent specific heat
peaks [30, 87] of polycrystalline Dy2Ti2O7 has provided recent impetus in this field. Ramirez
et al were the first to suggest [30] that some of these peaks can be attributed to a fraction
of crystallites whose [110] axes happen to align (closely) with the applied magnetic field.
More generally, we can interpret this argument as saying that magnetic moments which are not
strongly coupled to the magnetic field through equation (19) are free to contribute to a dipole
induced phase transition (and therefore sharp peaks in the specific heat) at low temperatures.
Historically, the h ‖ [110] coupling of figure 22(b) was considered to be the most likely
scenario for providing these field decoupled spins in a finite number of crystallites in the
polycrystalline sample [30]. However, as discussed above, very precise alignment of the field
with the [110] crystal axis is probably needed for q = X order to be maintained to infinite field
strength, a condition that is not obviously satisfied for a macroscopic number of crystallites
in a polycrystalline sample. One may therefore argue that crystallites with only one field
decoupled spin would occur in much greater number in a real polycrystalline sample. This
is because, for a given crystallite orientation, there is a rotational degree of freedom in the
choice of the applied magnetic field direction for which a given sublattice remains decoupled
(one of these [59] being h ‖ [112]), which does not exist in the two-spin field decoupled
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case (h ‖ [110]). However, an additional subtlety occurs, as for any field perfectly aligned
perpendicular to a local 〈111〉 sublattice (e.g. for h ‖ [112]), the three sublattices that are
coupled to the field will create an internal local exchange plus dipolar field that forces the
field-perpendicular spin to obey the ice rules. This effect causes a Schottky anomaly in the
specific heat at a temperature scale of approximately 2 K. Work to investigate the cancellation
of the local internal field with a slight detuning of the external magnetic field away from the
plane perpendicular to the 〈111〉 direction, which may possibly promote a new low temperature
phase transition, is currently in progress [88].

One of the ultimate goals of any finite temperature Monte Carlo study of the dipolar spin ice
model in an external magnetic field is to reproduce the general features [30, 87] of the specific
heat of polycrystalline Dy2Ti2O7. Simulations are currently under way using both single spin
flips and loop move Monte Carlo simulation for various field directions to look for signs of
an ordering transition in the specific heat. In particular, in the cases of h ‖ [100] and [110],
the ground state is known and hence an order parameter can be constructed, facilitating the
identification of any possible phase transitions. Preliminary results [88] indicate the existence
of a sharp feature in the specific heat of Dy2Ti2O7 for h ‖ [110], corresponding to a phase
transition to the q = X ground state (see also [63]). However, as this result is very recent it
lies outside the scope of this review, and will be left for future discussion [88]. Finally, we
should note that in any finite temperature Monte Carlo simulation, the simulation boundary will
induce significant demagnetization effects, which must be considered if comparisons are to be
made to any experimental results. A brief discussion of demagnetization effects is relegated
to appendix C.

To summarize this section, we have performed calculations of the properties of the dipolar
spin ice model in an external magnetic field. Ewald energy calculations of various spin
configurations reveal the preferred T = 0 ordering for various field directions. In particular,
for h ‖ [100] the q = 0 structure is the ground state, while for h ‖ [110] we find the q = X state
becomes energetically favoured. Finite temperature Monte Carlo simulations of the dipolar
spin ice model find [88] that the system settles into these ground states for the respective field
directions.

6. Conclusion

We have reviewed much of the early experimental and theoretical work on the static magnetic
properties of spin ice. We have also clarified our point of view that long range dipolar
interactions are consistent with and responsible for the physics observed in spin ice materials
based on Dy3+ and Ho3+ rare earth ions. Support for this perspective resides in the
detailed Monte Carlo calculations presented in this paper, and in mean field studies presented
elsewhere [52, 53].

Monte Carlo simulations were performed on the dipolar spin ice model with the long range
dipole–dipole interactions treated via the Ewald method. Using a single spin flip Monte Carlo
method, we were able to study the development of the spin ice manifold. We found that spins
freeze out at temperatures O(1 K) with a macroscopic degeneracy characterized by a residual
Pauling entropy. We also found that single spin flip dynamics is not effective at equilibrating
the system, thus making it impossible to determine the ordered state of spin ice using this
technique.

Mean field theory [52, 53], applied to the same dipolar spin ice Hamiltonian with the dipolar
interactions treated via the Ewald method in q-space, showed that an ordering wavevector may
be selected and that a proper treatment of the long range dipoles is crucial to achieving a
picture consistent with the experiments. A key point is that the symmetry of self-screening is
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not exact for the dipolar Hamiltonian. In the end, a quasi-degenerate spectrum emerges with
a commensurate ordering wavevector (q = (0, 0, 2π/a)) and a two-in and two-out spin ice
structure.

In order to find the ordered state of spin ice in a Monte Carlo simulation, we developed
a non-local algorithm that employs loop moves (or updates) within the spin ice manifold.
These loop moves represent the ‘nearly’ zero-energy collective dynamics that allows our
model to sample the highly degenerate phase space of spin ice. Application of this method
at temperatures within the spin ice manifold, i.e., T � 1 K, leads to the selection of a single
spin ice ground state configuration with q = (0, 0, 2π/a). The loop Monte Carlo simulation
and mean field results agree. In addition, we find a first order transition to the ground state
at Tc ≈ 0.08 Dnn, independent of Jnn, which recovers all of the residual Pauling entropy of
the spin ice manifold. Our physical understanding of spin ice is aided by the picture that any
collective dynamics in real spin ice materials is inhibited by a freezing process as the system
enters the temperature range where the ice rule fulfilling manifold develops, i.e., Tfreeze ≈ 0.4 K
for Dy2Ti2O7 and Tfreeze ≈ 0.6 K for Ho2Ti2O7, compared to the predicted Tc ≈ 180 mK for
both materials.

On the strength of the experimental evidence and the success of the dipolar spin ice model,
we assert that both Ho2Ti2O7 and Dy2Ti2O7 are spin ice materials.

Finally, we have discussed the application of a magnetic field to the spin ice materials as a
means of exploring the possible structures of the spin ice manifold and to further characterize
the interactions present in these intriguing systems. We find excellent agreement between
the dipolar spin ice model and many experimental studies to date. In addition, we have made
important predictions regarding the ground state configurations of the model for different cases
of applied magnetic fields. The consequence of this study in relation to known experimental
results is intriguing, arguing for more theoretical, numerical and experimental work, to resolve
all the perplexing issues at stake.
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Appendix A. The Ewald method

We give only a brief overview of the Ewald [89] technique as it applies to dipole–dipole
interactions in Monte Carlo simulations. A more detailed discussion of the method can be
found in [72] and [90]. The mean field case as it applies to moments on the pyrochlore lattice
is treated in detail in [53].

The dipole–dipole interaction is an infinite sum that falls off as the inverse cube of the
separation distance between dipoles, 1/|Rab

i j |3. Hence it is a conditionally convergent series.
The point of the Ewald method is to convert this slowly converging lattice sum into of two
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absolutely (rapidly) converging series, one in real space and the other in Fourier space. The
general lattice sum for 〈111〉 Ising dipoles on the pyrochlore lattice is

A =
∑
i, j

∑
a,b

(
ẑa · ẑb

|Rab
i j |3 − 3(ẑa · Rab

i j )(ẑb · Rab
i j )

|Rab
i j |5

)
,

= −(ẑa · ∇x)(ẑ
b · ∇x)

{∑
i, j

∑
a,b

1

|Rab
i j − x|

}
x=0

(A.1)

where the spin variables σ a
i have been dropped for notational convenience. The dipole sum

excludes terms with Rab
i j = 0. Absolute convergence is forced on the sum inside the curly

brackets of equation (A.1) by use of a convergence factor. The form of this convergence factor
differs depending on whether the dipolar sum is performed on N particles in real space (e.g.,
Monte Carlo and molecular dynamic simulations) or in the thermodynamic limit in momentum
space (mean field theory).

In our work, MC simulations are performed on three-dimensional lattices of L × L × L
cubic cells of the pyrochlore lattice under periodic boundary conditions; thus there are
N = 16 × L3 spins in the simulation cell. The separation of moments within a simulation
cell is given by Rab

i j . The dipolar energy for any pairwise interaction is calculated within the
minimum image convention by summing replicas of the N-site simulation cell over spherical
shells of radii n = L(nx , ny, nz) (nx, ny, nz are integers) with the inclusion of a spherical
convergence factor e−s|n|2 . The effect of the convergence factor is removed from the final form
of the Ewald equations by imposing the limit s → 0. Therefore, the starting point for the
Ewald method is the dipole–dipole pair interaction,

Aab
i j (s) = −(ẑa · ∇x)(ẑ

b · ∇x)

{∑
n′

e−s|n|2

|n + Rab
i j − x|

}
x=0

, (A.2)

where
∑

n′ means that n = 0 is omitted whenever Rab
i j = 0. The point charge distribution,

1/|n + Rab
i j − x|, is rewritten with the aid of the � function identities

1

|X| = 1√
π

∫ ∞

0
t−1/2e−t|X|2 dt (A.3)

= 2√
π

∫ ∞

0
e−t2|X|2 dt . (A.4)

Using equation (A.3), the pairwise interaction becomes

Aab
i j (s) = −(ẑa · ∇x)(ẑ

b · ∇x)
1√
π

∫ ∞

0
dt

{∑
n′

t−1/2e−t|n+Rab
i j −x|2−s|n|2

}
x=0

, (A.5)

and the remainder of the Ewald calculation for Aab
i j follows arguments outlined in [90]. The

Ewald equations for a Monte Carlo simulation can also be found in appendix A of [67]. Aab
i j

is calculated for each pairwise interaction, {(i, a), ( j, b)}, in the simulation cell, but this need
be done only once because the spins are fixed to the lattice points. These pair interactions are
stored in a look-up table and used in the stochastic sampling and measurement procedures of
a Monte Carlo simulation.

Finally, recall that the Ewald technique re-sums an infinite number of dipole images,
and with the periodic boundary conditions used in the MC simulation cell, the following two
constrains are notable: (i) a slight bias toward an ordering wavevector commensurate with
the inverse of the simulation cell will develop due to a small enhancement of the relevant
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paramagnetic correlations; and (ii) a small finite size scaling, of order 1/L3, exists in the
Ewald interaction representation of the dipolar interaction. However, both of these effects
can be easily systematically investigated in a Monte Carlo simulation by comparing results
obtained on a variety of different size lattices.

Appendix B. Ewald method versus truncated dipolar interactions

In this appendix, we compare the results obtained from our loop Monte Carlo simulation
with Ewald summation methods to the Monte Carlo results obtained by truncating the dipolar
interaction in [32, 33].

Historically, the first Monte Carlo simulation on a model of spin ice was carried out
by Ramirez et al [30], who used these numerics to supplement their experimental findings
on Dy2Ti2O7. In their model, spin–spin interactions were assumed to be purely dipole–
dipole, but with a g-factor reduced by 25% compared from the expected value for Dy3+. It
was commented [30] that this reduction in the strength of the dipole–dipole interaction was
most probably the result of a compensating effect due to a small admixture of superexchange
interaction. This hypothesis was later confirmed [32] in a series of Monte Carlo simulations
complementing DC susceptibility (χ) and specific heat measurements of Ho2Ti2O7. In this
work, Siddharthan et al derived a limiting high temperature series expansion of χ for 〈111〉
Ising spins on the pyrochlore coupled by both nearest neighbour exchange and long range
dipole–dipole interactions with the aim of determining the nearest neighbour exchange Jnn

(assuming a known dipolar coupling strength Dnn ≡ 5D/3 = 2.35 K). Specifically, by fitting
T χ(T ) versus 1/T in the temperature range T = 2–10 K, they obtained Jnn = −1.92 K.
We believe that this determination of Jnn for Ho2Ti2O7 in that temperature range is erroneous.
A comparison of calculated χ(T ) in the parametric regime, T > 20 K, with experimental
data for Ho2Ti2O7 gives Jnn = −0.55 [91]. However, this value of Jnn = −1.92 K was used
in Monte Carlo simulations with the dipole–dipole interactions truncated at the fifth nearest
neighbour. A freezing into a partially ordered state was found at a temperature depending on
the ratio Dnn/(Dnn + Jnn) (where Jnn < 0 for antiferromagnetic exchange) [32].

A different work systematically studied the competition in the spin ice model
between exchange and long range dipole–dipole interactions handled via Ewald summation
methods [45]. There, using conventional single spin flip Monte Carlo simulations, it was
found that for all Jnn/Dnn > −0.91 the system develops spin ice behaviour, as opposed to
long range order. Further, for Jnn > 0 (i.e. ferromagnetic nearest neighbour exchange), the
temperature at which the specific heat peak occurs is Tpeak ∼ 1.1(Jnn + Dnn), apparently in
contradiction with the results in the inset of figure 4 in [32]. It was argued in [45] that truncation
of the dipole–dipole interactions can lead to spurious results, an observation criticized in [33].
In [33], Siddharthan et al put forward several compelling arguments for a specific long range
ordered ground state for Ising spins on the pyrochlore lattice. A different perspective [52]
employed mean field theory calculations of long range dipole coupled 〈111〉 Ising spins on the
pyrochlore lattice. There it was argued that important screening effects exist in these systems,
and that shells of dipoles at distances larger than the cut-off distance, R > Rc, largely cancel
the tendency to order created by the shells at smaller R < Rc [52]. Furthermore, a unique
commensurate soft mode at q = (0, 0, 2π/a) was predicted. The Monte Carlo simulations
presented in the current work, employing loop moves and an Ewald summation formulation
for dipolar interactions, confirm the ordering wavevector of [52] and show that it gives rise to
a ground state magnetic structure identical to that found in [33].

The above perspective allows us to comment that the difficulties arising with dipolar
interactions occur when the nearest neighbour exchange is antiferromagnetic and close to the



Topical Review R1315

critical point between a ground state with ordering wavevector at q = (0, 0, 2π/a), and the
all-in or all-out state with q = 0 order, which occurs at Jnn/Dnn = −0.91. For the region
of parameters −1 < Jnn/Dnn < 0, it is very important to realize that there is a cancellation
(or near cancellation) of the effective nearest neighbour coupling. In that parameter region,
the long range part of the dipolar interactions must be calculated very carefully, since the
dipolar interactions are to a large extent ‘self-screened’. In other words, the development of
the paramagnetic correlations (i.e. at temperatures above the ultimate development of long
range order) is quantitatively very sensitive to the cut-off distance in this Jnn/Dnn parameter
window. Indeed, in that range, the ordering wavevector is typically incommensurate and an
irrational function of Jnn/Dnn that depends on relatively large cut-off distances (of order 100
neighbours or more). However, for an Ising system, it is not possible to have a T = 0 ground
state with a permanent moment structure, where the static ordered moment is equal to unity
for all sites. The best candidate ordered structure in the range −1 < Jnn/Dnn < 0 (and for
moderately large cut-off distance) appears to be the ‘same’ q = (0, 0, 2π/a) ordered state as
we find in this work.

In summary, in the coupling parameter window −0.91 < Jnn/Dnn < 0, nearest neighbour
antiferromagnetic interactions strongly compete with the dipolar coupling at the nearest
neighbour level. In such a case, the dipolar interactions must be summed up to very large
distances to allow the long distance self-screening to be manifest. However, the upper limit of
the ‘validity of truncated dipolar interactions’, Jnn/Dnn = 0, is not well defined. For example,
the present work finds a transition to the q = (0, 0, 2π/a) order at Tc ≈ 0.08Dnn ∼ 0.18 K and
a non-singular specific heat peak at Tpeak ≈ 2.3 K for Dnn = 2.35 K. However, Siddharthan
et al [33] finds a rounded specific heat maximum at T ∼ 0.6 K and no indication of a feature
at T � 2.3 K. As Jnn/Dnn → ∞, the spin ice manifold forms at a temperature Tpeak ∼ 0.8Jnn

(figure 6). The small dipole induced correlations,which ultimately lead to the q = (0, 0, 2π/a)

at Tc/Dnn = 0.08, cannot develop via conventional local spin flip dynamics in the frozen ice
rule obeying state established at temperatures below 0.8Jnn. The equilibrium correlations
ultimately developing at Dnn < T � 0.8Jnn can only be well described quantitatively by a
proper handling of the long range dipole–dipole interactions.

Appendix C. Demagnetization effects

When doing finite temperature Monte Carlo simulations on magnetic materials in an applied
magnetic field, the effect of the boundary of the simulation cell must be carefully considered.
For systems of interest, the dipolar spin ice Hamiltonian is augmented with a field dependent
term, equation (19). The inclusion of this term in our Monte Carlo simulations leads to subtle
effects. In a microscopic Hamiltonian, the field h referred to in equation (19) is the sample
internal field, i.e., the magnetic field that directly couples to each magnetic dipole moment.
However, in real materials, bulk demagnetization effects alter the magnitude of the internal
field in a complicated manner that depends on sample size, shape, alignment and surrounding
medium. In general, experimentalists define three separate quantities (the magnetic flux density
B, the magnetic field strength H and the magnetization M) to account for these effects. In a
macroscopic material, these quantities are related by

B = µ0(H + M), (C.1)

where B is the independent quantity controlled in the experiment, but H is the field strength that
couples to the spins (through which the bulk susceptibility is defined). In order to benchmark an
experiment to a theory such as ours, an attempt must be made to relate the external experimental
(applied) B controlled by external sources of current to the internal h of our Hamiltonian. From
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the experimental side, this amounts to knowing the internal M associated with the specific
sample being measured. This M is in general not easily deduced—although, for certain sample
shapes (e.g., ellipsoids of revolution) it is at least uniform, and fairly accurate estimates can
be made. The procedure of correcting for M to obtain H is called making a demagnetization
correction.

Theoretically, demagnetization effects are incorporated into a Monte Carlo simulation
by imposing certain boundary conditions on the microscopic Hamiltonian in question. As
described earlier, we use the Ewald summation method to calculate the long range dipolar
interactions of our model. We follow the standard approach in which the pairwise interactions
are evaluated by summing over periodic copies of the N-site simulation cell until convergence
is obtained [90], effectively simulating the infinite range nature of the dipoles. A consequence
of this technique is that the finite size nature of the simulation cell is suppressed. We are,
therefore, faced with the question of how to interpret an ‘infinite boundary’. If one wishes to
simulate materials with no net magnetic moment, or materials with no internal demagnetizing
field, no correction due to sample boundary is needed, and the simple Ewald sum results may
be used. This is equivalent to simulating a long thin ‘needle’ of the bulk material. However, if
one wishes to simulate a material in which the unit cell has a net magnetic moment or internal
demagnetizing fields, then we must modify the Ewald sum to take into account the necessary
boundary effects. This is especially important in our simulation because the long range nature
of the dipole–dipole interactions greatly accentuates these effects.

The approach described by de Leeuw et al [90] is to include a boundary term in the Ewald
sum of the form(

4π

2µ′ + 1

)
µi · µ j

L3
(C.2)

where µi is the magnetic dipole moment of a spin and L is the system linear dimension.
Physically, the inclusion of this term corresponds to the consideration of a region external to
the spherical Ewald boundary (see the discussion in [90]). This external region is a continuum
with the magnetic permeability constant ranging from µ′ = 1 to infinity. Because of the
nature of our Ewald sum, the µ′ = 1 case will in effect simulate the bulk of a spherical sample
surrounded by a vacuum. The µ′ = ∞ case corresponds to simulating a bulk sample which is
needle-like and parallel to an applied B, and hence contains no internal demagnetizing field.

In summary, to make a meaningful comparison between simulation and experiment within
the dipolar spin ice model in an applied magnetic field, one of two scenarios must arise:

(i) Simulations are performed using the regular Ewald summation method, and bulk
demagnetization effects are accounted for by experimentalists.

(ii) Simulations are performed with the inclusion of a boundary term, equation (C.2).
Experimentalists are restricted to measurements on spherical samples to make quantitative
comparisons. However, measurements on other sample shapes (with approximately
constant internal fields) may allow some qualitative comparison.

The inclusion of the boundary term is a non-trivial matter in many simulations. For
example, it will promote effects such as domain formation in simulations of global Ising
ferromagnets. It is therefore always important to check ground state configurations of systems
where the term of equation (C.2) is absent against those where it has been included, in order
not to miss any important secondary effects.

As a means of addressing some of these issues, we present some preliminary results on
Monte Carlo simulations of the dipolar spin ice model. Figure C.1 shows specific heat curves
for Dy2Ti2O7 in an applied magnetic field, with and without the inclusion of the boundary
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Figure C.1. Specific heat curves for Dy2Ti2O7 in an applied field h ‖ [110], in simulations
without (curve) and with (circles) the boundary term (BT) in the Ewald energy summation. These
simulations employed single spin flip dynamics in the Monte Carlo simulation. The significance
of these data in the context of experimental measurements on Dy2Ti2O7 is discussed in detail in
section 5.

term, equation (C.2), with µ′ = 1. The results presented in figure C.1 were performed using
single spin flip dynamics on a system of size L = 3. As we see, the boundary term does
not affect the h = 0 specific heat curve. This is consistent with the understanding that the
boundary term is only necessary in Monte Carlo programs where the simulation cell has a
net magnetic moment (which is not true in general for the spin ice manifold). For moderate
fields, we see that the boundary term significantly alters the shape of the specific heat curve, as
expected, since the simulation cell is acquiring a net magnetic moment. For very large fields,
the boundary term begins to lose its effect, as the field term (equation (19)) becomes dominant
in the Hamiltonian.
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